Проектирование и строительство домов

Проектирование и строительство домов

» » Семинар математическое моделирование в начальной школе. Моделирование как метод обучения дошкольников математике

Семинар математическое моделирование в начальной школе. Моделирование как метод обучения дошкольников математике

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.

Ялтинский учебно-воспитательный комплекс «Школа-лицей № 9»

Зам.директора по УВР Романова А.Н.

«Моделирование на уроках математики в начальной школе»

Практический семинар

Математике надо учить в школе

Еще и стой целью, чтобы знания,

которые тут получают, были бы

достаточными для обычных

нужд в жизни.

М. Лобачевский

План доклада

    Новые ориентиры в математическом образовании.

    Методические основы моделирования. Математическая модель.

    Использование метода моделирования на уроках математики в начальной школе.

    Ознакомление учащихся с приемами математического моделирования.

    Применение моделирования при решении уравнений.

    Моделирование во время решения текстовых задач.

    Использование моделирования при изучении нумерации, приемов сложения и вычитания чисел, а также в работе над единицами длины.

    Новые ориентиры в математическом образовании. (5 мин)

Общеизвестно, что модели являются языком математики, а моделирование – их речью. Успешность овладения математикой определяется, прежде всего, тем, насколько хорошо ребенок научился «разговаривать» на их языке. Определяется это не только академическими успехами ученика в решении научно-познавательных заданий, а в большей степени жизненным успехом личности - благодаря способности применять математические методы для решения практических, реальных заданий, которые этого требуют. Согласитесь, это также хороший результат обучения математики в школе.

Учим ли мы своих учеников математической речи? Или, возможно, считаем это сложным заданием для начальной школы? Или просто надеемся на то, что в ходе ежедневного решения примеров и задач дети сами постепенно научатся ею пользоваться?

По данным мониторинга в школах г.Киева, а также данные всеукраинского мониторинга свидетельствуют о том, что большинство учащихся (60% и соответственно 53%) не умеют работать с готовыми графическими моделями, выполнять творческие задания, применять полученные знания в новых ситуациях для решения проблемы.

Такое состояние математического образования стало причиной необходимости существенного пересмотра государственных требований в обучении школьников математике. Новая редакция «Державного стандарту …», которая вступила в силу в этом году. С позиции личностно-ориентированного и компетентностного подхода фактически переориентовывает деятельность учителя. Компете́нтность - наличие знаний и опыта, необходимых для эффективной деятельности в заданной предметной области . Сравним . В еще действующем Государственном стандарте указано: «Изучение математики в начальной школе обеспечивает овладение учащимися знаний, умений и навыков, необходимых для дальнейшего изучения математики и других предметов… Изучение математики способствует развитию познавательных способностей младших школьников – памяти, логического и творческого мышления, воображения, математической речи». В новой редакции государственного стандарта цель в образовательной отрасли «Математика» уже определена как «формирование предметной математической и ключевых компетентностей, необходимых для самореализации учащихся в быстроизменяющемся мире». Предметная математическая компетентность рассматривается как «личностное образование, которое характеризует способность ученика (ученицы) создавать математические модели процессов окружающего мира, применять опыт математической деятельности во время решения учебно-познавательных и практически ориентированных задач».

Поэтому, овладение математической речью – способность строить математические модели – становится основной целью обучения математики, которое реализуется через формирование у учащихся «умений пользоваться математической терминологией, знаковой и графической информацией».

Позитивный опыт обучения учащихся моделированию (и не только на уроках математики) накопленный системой развивающего обучения Д.Б. Эльконина – В.В. Давыдова, направленный на формирование у учащихся полноценной учебной деятельности, одной из которых есть моделирование.

Формирование у учащихся умения моделировать является одной из целей развивающего обучения, а модели, которые создают и которыми пользуются дети, – это прежде всего, один из способов формирования умений учиться (а не только способ наглядности).

Задача нашего сегодняшнего семинара состоит в том, чтобы разобраться в вопросах моделирования, показать, как можно использовать модели для обучения младших школьников решать уравнения и задачи, математические свойства, приемы сложения и вычитания чисел.

2. Методические основы моделирования. (8 мин)

Моделирование - это одно из средств познания действительности. Модель используется для изучения любых объектов (явлений, процессов), для решения различных задач и получения новой информации. Следовательно, модель - некий объект (система), использование которой служит для получения знаний о другом объекте (оригинале).

Использование моделирования рассматривается в двух аспектах:

во-первых, моделирование служит тем содержанием, которое должно быть усвоено детьми в результате педагогического процесса;

во-вторых, моделирование является тем учебным действием и средством, без которого невозможно полноценное обучение.

Наглядность моделей основана на следующей важной закономерности: создание модели производится на основе предварительного создания мысленной модели - наглядных образов моделируемых объектов, то есть субъект создает у себя мысленный образ этого объекта, а затем (вместе с детьми) строит материальную или образную модель (наглядную). Мысленные модели создаются взрослыми и могут преображаться в наглядные при помощи определенных практических действий (в которых могут участвовать и дети), дети также могут работать с уже созданными наглядными моделями.

В работе с детьми можно использовать замещение предметов: символы и знаки, плоскостные модели (планы, карты, чертежи, схемы, графики), объемные модели, макеты.

Использование метода моделирования помогает решать комплекс очень важных задач:

развитие продуктивного творчества детей;

развитие высших форм образного мышления;

применение ранее полученных знаний в решении практических задач;

закрепление математических знаний, полученных детьми ранее;

создание условий для делового сотрудничества;

активизация математического словаря детей;

развитие мелкой моторики руки;

получение новых представлений и навыков в процессе работы;

наиболее глубокое понимание детьми принципов работы и строения оригиналов с помощью моделей.

Модель дает нам не просто возможность создать наглядный образ моделируемого объекта, она позволяет создать образ его наиболее существенных свойств, отраженных в модели. Все остальные несущественные свойства при разработке модели отбрасываются. Таким образом, у нас создается обобщенный наглядный образ моделируемого объекта.

Научной основой моделирования служит теория аналогии, в которой основным понятием является - понятие аналогии - сходство объектов по их качественным и количественным признакам. Все эти виды объединяются понятием обобщенной аналогии - абстракцией. Аналогия выражает особого рода соответствие между сопоставляемыми объектами, между моделью и оригиналом.

Моделирование является многофункциональным, то есть оно используется самым различным образом для различных целей на различных уровнях (этапах) исследования или преобразования. В связи с этим многовековая практика использования моделей породила обилие форм и типов моделей.

Рассмотрим классификацию, предлагаемую Л. М. Фридманом. С точки зрения степени наглядности он все модели разбивает на два класса:

шаг 1. 1-2

· материальные (вещественные, реальные);

· идеальные.

К материальным моделям относят такие, которые построены из каких-либо вещественных предметов.

Шаг 2

Материальные модели, в свою очередь, можно разделить на статические (неподвижные) и динамические (действующие).

Шаг 3

Следующим видом динамических моделей являются аналоговые и имитирующие , которые воспроизводят то или иное явление с помощью другого, в каком-то смысле более удобного . Например, такая модель - искусственная почка - функционирует одинаково с естественной (живой) почкой, выводя из организма шлаки и другие продукты обмена, но, конечно, устроена она совершенно иначе, чем живая почка.

Идеальные модели делят обычно на три вида:

Шаг 4

· образные (иконические);

· знаковые (знаково-символические);

· мысленные (умственные).

Классификацию моделей можно проводить по различным признакам:

1) по характеру моделей (то есть по средствам моделирования);

2) по характеру моделируемых объектов;

3) по сферам приложения моделирования (моделирование в технике, в физических науках, в химии, моделирование процессов живого, моделирование психики и т. п.)

4) по уровням («глубине») моделирования.

Наиболее известной является классификация по характеру моделей .

Шаг 5.

Согласно ей различают следующие виды моделирования :

Шаг 6.

1. Предметное моделирование , при котором модель воспроизводит геометрические, физические, динамические или функциональные характеристики объекта. Например, модель моста, плотины, модель крыла самолета и т.д.

Шаг 7.

2. Аналоговое моделирование , при котором модель и оригинал описываются единым математическим соотношением. Примером могут служить электрические модели, используемые для изучения механических, гидродинамических и акустических явлений.

Шаг 8.

3. Знаковое моделирование , при котором моделями служат знаковые образования какого-либо вида: схемы, графики, чертежи, формулы, графы, слова и предложения.

Шаг 9.

4. Со знаковым тесно связано мысленное моделирование , при котором модели приобретают мысленно наглядный характер.

Шаг 10.

5. Моделированый эксперимент – особый вид моделирования где используется не сам объект, а его модель.

Основная цель моделирования – выделить и зафиксировать наиболее общие отношения в предмете для его изучения.

Метод моделирования – это сложное, интегративное образование. Согласно классификации дидактических методов Н.Г. Казанского и Т.С. Назаровой, метод моделирования имеет трехкомпонентную структуру

Шаг 11. (см. схему). Таким образом, в структуре метода моделирования внешняя сторона – это конкретная форма взаимодействия учителя и учащихся. Внутренняя сторона – это совокупность общеучебных приемов (анализа, синтеза, обобщения и т.д.) и способов учебной работы. Технологическая сторона – это совокупность специфических приемов данного метода (предварительный анализ, построение модели, работа с ней, перенос информации с модели на искомый объект – оригинал).

Метод моделирования

Внешняя сторона

Внутренняя сторона

Технологическая сторона

Формы:

    изложение

    беседа

    самостоятельная работа

    Психологическая сущность:

    догматический способ учебной работы;

    эвристический способ учебной работы

    исследовательский способ учебной работы

Логическая сущность:

    аналитический;

    интетический;

    индуктивный;

    дедуктивный;

    аналитико-синтетический

    Приемы построения модели;

    приемы преобразования модели;

    приемы конкретизации модели

Математическая модель. Математическое моделирование.

Математическая модель – приближенное описание какого – нибудь класса явлений внешнего мира при помощи математической символики. Например, отношения между элементами А, В, С, выражено формулой А+В=С - математическая модель.

Процесс математического моделирования, т.е. изучения явлений при помощи математических моделей, можно разделить на четыре этапа.

Шаг 12.

Первый этап – вычленение существенных признаков объекта.

13.

Второй этап – построение модели.

14 .

Третий этап – исследование модели.

15 .

Четвертый этап –перенос полученных на моделях сведений на изучаемый объект.

Особенность моделирования состоит в том, что наглядность представляет собой не простое демонстрирование натуральных объектов, а стимулирует самостоятельную практическую деятельность детей . Умение учащихся работать с моделью, ее преобразование для изучения общих свойств изучаемых понятий составляет одну из главных задач обучения во всех предметных областях.

Для моделирования используются разнообразные математические объекты: числовые формулы, числовые таблицы, буквенные формулы, функции, алгебраические уравнения, ряды, геометрические фигуры, разнообразные графосхемы, диаграммы Ейлера-Венна, графы.

3. Использование метода моделирования на уроках математики в начальной школе. (1,5 мин)

Необходимость овладения младшими школьниками методом моделирования как методом познания в процессе обучения можно обосновать с разных позиций.

Шаг 16.

Во-первых , это способствует формированию диалектико-материалистического мировоззрения.

17.

Во-вторых , как показывают эксперименты, введение в содержание обучения понятий модели и моделирования существенно меняет отношение учащихся к учебному предмету, делает их учебную деятельность более осмысленной и более продуктивной.

18.

В-третьих , целенаправленное и систематическое обучение методу моделирования приближает младших школьников к методам научного познания, обеспечивает их интеллектуальное развитие. Для того чтобы «вооружить» учащихся моделированием как способом познания, учителю недостаточно лишь демонстрировать им разные научные модели и показывать процесс моделирования отдельных явлений. Нужно, чтобы школьники сами строили модели, сами изучали какие-либо объекты, явления с помощью моделирования. Когда учащиеся, решая практическую математическую (сюжетную) задачу, понимают, что она представляет собой знаковую модель некоторой реальной ситуации, составляют последовательность различных ее моделей, затем изучают (решают) эти модели и, наконец, переводят полученное решение на язык исходной задачи, то тем самым школьники овладевают методом моделирования.

Ознакомление учащихся с приемами математического моделирования. (10 мин)

Известный психолог П. Гальперин с коллегами разработал теорию поетапного формирования умственных действий. Согласно этой теории процесс обучения рассматривается как овладение ребенком системой умственных действий, которое происходит в процессе интериоризации (переход внутрь) отвечает внешней практической деятельности.

Ребёнок совершает практические действия с предметами (сначала с реальными, а потом с воображаемыми) – предметные действия. От них он, с опорой сначала на копировальный рисунок, а потом и на предметные модели, переходит к графическим моделям. После введения математических знаков, букв для обозначения величин ученик для описания действий пользуется формулами, т.е. знаково-буквенными моделями, а потом словесными моделями (определениями, правилами).

Например, перед детьми поставлено конкретно-практическое задание, которое требует найти две одинаковые по объему посудины (разные по форме). Фото шаг 19

После этого дети (а не учитель) выполняют практические действия: наливают воду в одну банку, переливают её в другую. Если в другую банку ввошла вся вода из первой, то объёмы этих банок равные. Целесообразно предложить детям взять в руки такие две полоски, при помощи которых можно сообщить про отношения между объемами, формами – одинаковые они или разные. Если объемы банок одинаковые, дети должны поднять две полоски одинаковые по длине, а если разные, то разные по длине. Фото

шаг 20

Для подведения детей к использованию графической модели снова необходимо поставить конкретно-практическое задание: при момощи рисунка показать, что объем одной банки больше, чем другой. Опыт показывает, что дети начинают рисовать форму банок, т.е. делают копировальный рисунок, или рисуют полоски, при помощи которых показывали отношение объемов банок.

После обсуждения рисунков делаем вывод: рисовать банки – это неудачный способ (неточные рисунки, не изображено отношение объемов банок, работа забирает много времени). Но и полоски у детей тоже разные по ширине и длине, на это тоже идет много времени.

В результате приходим к выводу, что удобнее ширину полоски вообще не рисовать, чертить только длину полоски (т.е. отрезки). Если величины (длина, площадь, масса, объем и т.д.) выявляются одинаковыми, то имеют отрезки одинаковой длины, а если неодинаковые, то их длина должна быть разной. Фото в тетради. шаг 21.

Таким образом вводится изображение величин при помощи отрезков. Дети учатся схематически обозначать величины, а потом строить графические (линейные) модели.

Целесообразным также является введение в 1-м классе понятий «целого» и «части» и развития умений учащихся устанавливать отношения между этими понятиями. Как на языке математики записать то, что, наример, яблоко состоит из отдельных частей? Если яблоко целое, обозначим его кругом, а кучочки яблока – обозначим треугольниками, и получим такую графическую модель.

Шаг 22. Слайд 7

+ + + =

Упростим и будем иметь базовую модель:

шаг 23. + =

Целое и части – это относительные понятия. Основные свойства этого отношения (на множестве натуральных чисел): целое не может быть меньше чем часть, а часть не бывает больше, чем целое; целое равно сумме частей, а часть равна разности между целым и другой частью

Шаг 24. = -

Всем хорошо известны лучики, которые традиционно используют для изображения состава числа. Шаг 25 Слайд 8

Так отношения между частями и целым можно показать при помощи знакографической записи:

С шаг 26

А |____________|_____________|

В А В

Схема, которая описывает действие сложения, вместе с тем описывает и обратное действие – вычитание:

Шаг 27 слайд 9

Понятия части и целого дает возможность ввести переместительное и сочетательное свойства сложения величин. Слайд 10, 11 (2 шага), 12

Шаг 28, 29, 30

Как и при изучении сложения и вычитания, для изучения умножения и деления тоже можно использовать моделирование.

Традиционно умножение рассматривается как сложение одинаковых слагаемых. Пусть величину А прибавили В раз: слайд 13.

шаг 31. А+А+А+А+А = АхВ

Формула А х В читается так: «по А взять В раз» или «В раз взять по А»,

Шаг 32. где А – часть (мерка), которую ма обозначали треугольником.

В – количество равных частей (количество мерок), можем обозначить квадратиком.

Для обозначения целого используем тот же значек – кружок.

Целое характеризуется как результат арифметического действия умножения чисел А и В.

Х = А х В = С Схема, которая описывае это действие:

|____|_А___|_____________|

Понятно, что когда мы рассмотрим деление как предметное действие, направленное на деление по содержанию или на равные части, появится возможность установить связь умножения и деления. Теперь кроме формулы умножения Шаг 33. Ах В =С, получаем две обратные на деление шаг 34. С: А = В и шаг 35 . С: В = А (с геометрическими фигурами). Это означает, что схема на умножение является схемой на деление.

Применение моделирования при решении уравнений. (10 мин)

Для правильного выбора способа решения уравнений необходимо уметь находить отношения целого и части.Когда сформировано это понятие, дети приобретают умения выражать целое через части и части через целое. Установление связей между сложением и вычитанием величин на основе понятия части и целого дает возможность сопоставлять целое с суммой и уменьшаемым, части - с слагаемыми или вычитаемым и разностью и увидеть, что разные действия: А+В=С, С-А=В,или С-В=А – характеризуют те же отношения между величинами.

Находить неизвестное при решении уравнений помогают не только правила, но и отношения между частями и целым, представленных в виде графической модели. Слайд 14 шаг 36.

Алгоритм работы при обучении решению уравнений такой:

    Рисуем схему уравнения. Х +5 = 12 шаг 37.

    Находим целое и части сначала на схеме, потом в уравнении (подчеркиваем)

    Называем неизвестный компонент. Выясняем, чем он является: целым или частью.

    Анализируем, каким действием будем находить неизвестную величину.

    Находим Х. шаг 38 , 39

Построенной схемой можно воспользоваться при решении уравнения на вычитание. 12 – х = 5, посколькусхема, которая описывает действие сложения, одновременно является схемой на вычитание . Примеры фото из тетради

Слайды 15,16 (+1 шаг ), 17, 18.

Шаг, 40, 41, 41-а, 42,43

Задание разнести данные уравнения на схемы и составить выражение

слайд 19 шаг 44, 45. 44-а, 45-б

Аналогично используется моделирование при решении уравнений на нахождение неизвестного множителя, делителя и делимого.

Слайд 20( 8 шагов ) шаг 46.

Целесообразно при закреплении связи между умножением и делением познакомить с понятием площадь, формулой нахождения площади прямоугольника и нахождением неизвестной стороны. Слайд 21 (1 шаг)

Пример уравнения . Слайд 22 ( 4 шага)

Агоритм решения уравнения Слайд 23 .

Поскольку схема умножения является схемой деления, то из одного уравнения можно составить два уравнения на деление. Площадь – целое, а стороны длина и ширина – части.

Кроме того, моделирование дает возможность разнообразить творческую работу над уравнениями. Так, учитель может предложить такие виды заданий:

Слайд 24

    По схеме составить и решить уравнение. Шаг 48.

Слайд 25 ( решить с гостями )

    (дано несколько уравнений и схема) К какому уравнению подойдет эта схема? Найди и реши. Шаг 49.

Слайд 26, 27. 28, 29.

    Решать уравнения во время устного счета . Шаг 50, 51, 52,53

Слайд 30 (10 шагов), 31

    Составление условия задачи по схеме уравнения.

Новая презентация. (Семинар 2)

Моделирование во время решения текстовых задач (18 мин)

Слайд 1

Нельзя не согласится с мнением, что современное образование – это умение школьника взглянуть на реальную, жизненную ситуацию с позиции физика, химика, историка, географа, отнюдь не для того, чтобы стать исследователем в этой области, а для того чтобы в последующем находить решение в конкретных жизненных ситуациях.

Стать настоящим исследователем младший школьник может, решая текстовые задачи при обучении математике младших школьников.

Один из таких подходов – формирование у учащихся умения решать задачи определённого вида (например, решение задач на разностное сравнение и т.д., когда отрабатывается определенный вид задач). Другой основан на применении семантического и математического анализа текстовых задач, когда задача разбирается от данных к цели (синтетический способ) и от цели к данным (аналитический). Третий подход основан на методе решения учебных задач. Формирование действия моделирования, предполагает качественно иное формирование умения решать текстовые задачи.

Арифметические и алгебраические задачи в литературе ещё называют сюжетными, т.к. в них всегда есть словесное описание какого-то события, явления, действия, процесса. Текст любой сюжетной задачи можно воссоздать по – другому (предметно, графически, с помощью таблиц, формул и т.д.), а это и есть переход от словесного моделирования к другим формам моделирования. Поэтому в работе над задачами мы уделяем большое внимание построению схематических и символических моделей, а также умению работать с отрезками, графически моделировать с их помощью текстовую задачу, ставить вопрос, определять алгоритм решения и поиска ответа. Младший школьник, как известно не обладает достаточным уровнем абстрактного мышления. И наша задача заключается как раз в том, чтобы поступательно научить его представлять конкретные объекты в виде символической модели, помочь ему научится переводить текстовую задачу на математический язык. Мы считаем, что именно графическое моделирование текстовой задачи и, что самое важное, даёт реальную возможность наглядно увидеть и определить алгоритм его решения, осуществить самостоятельную рефлексию выполненного задания.

Но не всякая запись будет моделью задачи. Для построения модели, для её дальнейшего преобразования необходимо выделить в задаче цель, данные величины, все отношения, чтобы с опорой на эту модель можно было продолжить анализ, позволяющий продвигаться в решении и искать оптимальные пути решения. Решение любой задачи арифметическим способом связано с выбором арифметического действия, в результате выполнения которого можно дать ответ на поставленный вопрос. Чтобы облегчить поиск математической модели необходимо использовать вспомогательную модель. Слайд 2 (знакомство с составными частями в 1 классе).

Для воссоздания ситуации в условии задачи можно использовать схематический чертеж, который обеспечивал бы переход от текста задачи к соотнесению определенного арифметического действия над числами, что способствует формированию сознательного и прочного усвоения общего приема работы над задачей. Данная модель позволяет сформировать у ученика умение разъяснять, как он получил ответ на вопрос задачи. Но схематическая модель эффективна лишь в том случае, когда она понятна каждому ученику и выработаны умения переводить словесную модель на язык схемы. При обучении решению простых задач на сложение и вычитание вводятся понятия: целое, часть и их соотношение. Слайд 3. (2 шага)

Чтобы найти часть нужно от целого отнять другую часть.

Чтобы найти целое нужно части сложить.

При обучении решению простых задач на умножение и деление предлагаются схема и соответствующие правила:

Чтобы найти целое, нужно мерку умножить на количество мерок.

Чтобы найти мерку, нужно целое разделить на количество мерок.

Чтобы найти количество мерок, нужно целое разделить на мерку.

Слайд 4. (3 шага)

Данный подход в обучении позволяет отойти от старой классификации простых задач. Важно изображать данные и искомое так, чтобы достаточно ясно выступали зависимости между величинами. Рассматриваемыми в задаче, и их отношениями.

В качестве примера приведу несколько текстовых задач и их способы решения с помощью графических моделей.

Задача 1 Слайд 5. (5 шагов)

В аквариуме 4 больших и 5 маленьких рыб. Сколько всего рыб в аквариуме?

Упражнения на составление задач и выражений по картинкам (обратные задачи) Слайд 6. ( 8 шагов) Слайд 7.

Задача 2 Слайд 8

У Лены 5 груш. А у Миши на 4 больше, чем у Лены. Сколько груш у Миши?

Пример задания на составление задач по картинке и запись решения. Слайд 9.

Задача 3 Слайд 10. (5 шагов)

У Лены 10 груш. Это на 3 больше, чем персиков. Сколько персиков у Лены?

Задача 4. Слайд 11 (4 шага).

Саша купил 5 тетрадей по цене 8 грн и альбом для рисования за 33 гривны. Сколько денег Саша заплатил за покупку?

Цена одной тетради 8 грн – это единичный отрезок (мерка). Количество единичных отрезков (5) указывает на количество тетрадей. Вторая часть отрезка отражает цену (33 грн) и количество (1) альбомов.

Задача 5. Слайд 12 (7 шагов). Два способа составления схемы. Два решения

Заводу необходимо 90 работников: 50 токарей,10 слесарей, остальные – грузчики. Сколько необходимо грузчиков?

Слайд 13 (3 шага) составление обратной задачи. СТОП

Приёмы работы над задачами.

На этапе ознакомления использую следующие приёмы:

    Разъяснение каждой составляющей части модели.

    Указание к построению модели.

    Моделирование по наводящим вопросам и поэтапное выполнение схемы.

На этапе осмысления схематического чертежа использую следующие приёмы:

    Формулирование текста задачи по предложенному сюжету и отрезочной схеме.

    Соотнесение схемы и числового выражения.

    Заполнение схемы – заготовки данными задачи.

    Нахождение ошибок в заполнении схемы.

    Выбор схемы к задаче.

    Выбор задачи к схеме.

    Дополнение условий задачи.

    Изменение схемы.

    Изменение условий задачи.

    Изменение текста задачи.

Итогом обучения построению и осмыслению схематического чертежа является самостоятельное моделирование задач учащимися.

Решая текстовые задачи, мы работаем на формирование действия моделирования, и наоборот, чем лучше ребенок овладевает действием моделирования, тем легче ему решать задачи.

Учащихся следует знакомить с различными методами решения текстовых задач: арифметическим, алгебраическим, геометрическим, логическим и практическим; с различными видами математических моделей, лежащих в основе каждого метода; а также с различными способами решения в рамках выбранного метода. Решение текстовых задач дает богатый материал для развития и воспитания учащихся. Краткие записи условий текстовых задач – примеры моделей, используемых в начальном курсе математики. Метод математического моделирования позволяет научить школьников:

а) анализу (на этапе восприятия задачи и выбора пути реализации решения);

б) установлению взаимосвязей между объектами задачи, построению наиболее целесообразной схемы решения;

в) интерпретации полученного решения для исходной задачи;

г) составлению задач по готовым моделям и др.

Презентация работа над задачами Слайды 15-22 .

Комбинаторика на моделях с 1 класса

2 класс

Расположи цифры 4, 6, 8 разными способами:

В 3-4 классах

«Дерево» (36 обедов)

Фото из тетради

Использование моделирования при изучении нумерации, приемов сложения и вычитания чисел и в работе над единицами длины (5 мин)

Умение преобразовывать числа в единицы счета и единицы измерения чаще всего вызывает некоторые затруднения. И здесь в помощь целесообразно использовать метод моделирования. Изучая концентр «Десяток» дети схематически учатся изображать единицы при помощи точек. Слайд 25. Учатся складывать и вычитать на моделях. Слайд 26. (7 шагов) Слайд 27.

Изучая «Сотню» дети изображают десятки при помощи малых треугольников. Учатся преобразовывать числа в единицы счета (дес. и ед.) и параллельно с этим дети знакомятся с сантиметром и дециметром. Что позволяет проводить аналогию в преобразовании единиц длины. А также учат приемы сложения двузначных чисел на числовых схемах. Слайд 28


Изучая «Тысячу» дети узнают, что 10 треугольников (десятков) мы будем условно изображать одним большим треугольником (одна сотня). Параллельно дети изучают новую единицу длины – метр. Преобразовывая числа в единицы счета, мы проводим аналогичную работу с единицами длины. Слайд 29, пример для числа 342 Слайд 30 (5 шагов)

Пример для числа 320 Слайд 31 (6 шагов)

Пример для числа 302 Слайд 32 (8 шагов)

Алгоритмы. Слайды 33 и 34 (7 шагов)

Рекомендации к использованию метода моделирования на уроках о математики (3 мин)

    Необходимо понимать, что моделирование в обучении не желательное, а необходимое, поскольку создает условия для полноценного и крепкого овладения учениками методами познания и способами учебной деятельности.

    Основными целями моделирования на уроке являются:

    построение модели как способ конструирования нового способа действий.

    обучение построению модели на основе анализа принципов, способов её построения.

    Помните, что первые уроки, связаны с моделированием, по сути, есть уроками постановки учебно-практического задания. Проблема, которая возникает у детей, лежит в том, что способов для отображения общего отношения у них недостаточно. Каждый раз, когда появляется новая практическая ситуация, дети определяют новые отношения – и снова встает вопрос как его передать графически.

    Такие «абстрактные задания», как начертить схему по формуле, установить зависимость между величинами, которые входят в состав нескольких формул, и т.п. предлагают тогда, когда отношения исследованы, осведомлены и отображены в знаках, схемах неоднократно. За моделью у каждого ребенка должны стоять действия с реальными предметами, которые теперь он способен выполнить в воображении (умственные действия).

    Место модели для ребенка определяется в зависимости от задания

    Действие может сопровождаться моделью. Например, если конструирование способа легче выполнить на модели, как этап работы над текстовой задачей (отношения между величинами во время чтения отображаются схематически).

    Модель строится после завершения действий. Для того чтобы осознать выполненное действие, необходимо построить схему отдельного отношения. Построение схемы мотивируется вопросами типа: «Как ты это делал?», «Как бы ты научил других выполнять такие задания?

И еще несколько советов.

    Начинать надо с изучения специальной литературы. Например, это методика обучения математике в начальных классах и учебников Е. Александровой, Л. Петерсон.

    На родительских собраниях обязательно познакомьте родителей с методом обучения их детей. Ваши советы и инструкции могут им пригодиться.

    Используйте любую возможность стать участником мастер- классов по математическому моделированию.

Куда я вас и приглашаю.

ВВЕДЕНИЕ

Объекты материального мира сложны и многообразны. Отражение всех их свойств в создаваемых, изучаемых и используемых образах весьма затруднительно, да и не нужно. Важно, чтобы образ объекта содержал черты, наиболее важные для его использования Методом моделирования называется замена объекта оригинала объектом-заместителем, обладающим определенным сходством с оригиналом, с целью получения новой информации об оригинале. Моделью называется объект-заместитель объекта-оригинала, предназначенный для получения информации об оригинале.

Математические модели относятся к символьным моделям и представляют собой описание объектов в виде математических символов, формул, выражений. При наличии достаточно точной математической модели можно путем математических расчетов прогнозировать результаты функционирования объекта при различных условиях, выбрать из множества возможных вариантов тот, который дает наилучшие результаты.



В данной работе приведены виды классификации математических методов моделирования и описаны некоторые методы:

Линейное программирование - это методы математического моделирования, которые служат для поиска оптимального варианта распределения ограниченных ресурсов между конкурирующими работами.

Имитационное моделирование. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора исследуемой предметной области для проведения различных экспериментов.


Классификация методов математического моделирования

Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы и принципы.

По принадлежности к иерархическому уровню математические модели делятся на модели микроуровня, макроуровня, метауровня. Математические модели на микроуровне процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне перехода (прохода).

Математические модели на макроуровне процесса описывают технологические процессы.

Математические модели на метауровне процесса описывают технологические системы (участки, цехи, предприятие в целом).

По характеру отображаемых свойств объекта модели можно классифицировать на структурные и функциональные

Модель структурная, – если она представима структурой данных или структурами данных и отношениями между ними В свою очередь, структурная модель может быть иерархической или сетевой.

Модель иерархическая (древовидная), – если представима некоторой иерархической структурой (деревом); например, для решения задачи нахождения маршрута в дереве поиска можно построить древовидную модель, приведенную на рисунке 1.

Рисунок 1 - Модель иерархической структуры.


Модель сетевая, – если она представима некоторой сетевой структурой. Например, строительство нового дома включает различные операции которые можно представить в виде сетевой модели, приведенной на рисунке 2.

Рисунок 2 - Модель сетевой структуры.

Модель функциональная, – если она представима в виде системы функциональных соотношений. Например, закон Ньютона и модель производства товаров –функциональные.

По способу представления свойств объекта модели делятся на аналитические, численные, алгоритмические и имитационные.

Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних и имеют единственные решения при любых начальных условиях. Например, процесс резания (точения) с точки зрения действующих сил представляет собой аналитическую модель. Также квадратное уравнение, имеющее одно или несколько решений, будет аналитической моделью. Модель будет численной, если она имеет решения при конкретных начальных условиях (дифференциальные, интегральные уравнения).

Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие. Введение данного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования) вполне обосновано, т. к. не все модели могут быть исследованы или реализованы алгоритмически. Например, моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа Х может служить алгоритм вычисления его приближенного, сколь угодно точного значения по известной рекуррентной формуле.

Модель имитационная, – если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели, например модель экономической системы производства товаров двух видов. Такую модель можно использовать в качестве имитационной с целью определения и варьирования общей стоимости в зависимости от тех или иных значений объемов производимых товаров.

По способу получения модели делятся на теоретические и эмпирические Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне. Например, существуют выражения для сил резания, полученные на основе обобщения физических законов. Но они неприемлемы для практического использования, т. к. очень громоздки и не совсем адаптированы к реальным процессам. Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

По форме представления свойств объекта модели делятся на логические, теоретико-множественные и графовые. Модель логическая, если она представима предикатами, логическими функциями, например, совокупность двух логических функций может служить математической моделью одноразрядного сумматора. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности к ним и между ними. Модель графовая, – если она представима графом или графами и отношениями между ними.

По степени устойчивости . модели могут быть разделены на устойчивые и неустойчивые. Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой

По отношению к внешним факторам модели могут быть разделены на открытые и замкнутые. Замкнутой моделью является модель,которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений переменных во времени определяются внутренним взаимодействием самих переменных. Замкнутая модель может выявить поведение системы без ввода внешней переменной. Пример: информационные системы с обратной связью являются замкнутыми системами. Это самонастраивающиеся системы, и их характеристики вытекают из внутренней структуры и взаимодействий, которые отражают ввод внешней информации. Модель, связанная с внешними (экзогенными) переменными, называется открытой.

По отношению к временному фактору модели делятся на динамические и статические Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Динамической моделью называется модель, если среди ее параметров есть временной параметр, т. е. она отображает систему (процессы в системе) во времени. одновременно.


Линейное программирование

Среди задач математического программирования самыми простыми (и лучше всего изученными) являются так называемые задачи линейного программирования. Характерно для них то, что:

а) показатель эффективности (целевая функция) W линейно зависит от элементов решения х 1 , х 2 , ....., х п и

б) ограничения, налагаемые на элементы решения, имеют вид линейных равенств или неравенств относительно х 1 , х 2 , ..., х п

Такие задачи довольно часто встречаются на практике, например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т. д. Это и естественно, так как во многих задачах практики «расходы» и «доходы» линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т. д.).

Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛИ), которая формулируется так: найти неотрицательные значения переменных х 1 ,х 2 , ..., х п, которые удовлетворяли бы условиям-равенствам (1).


Случай, когда f надо обратить не в максимум, а в. минимум, легко сводится к предыдущему, если попросту изменить знак f на обратный (максимизировать не f, а f" = - f). Кроме того, от любых условий-неравенств можно перейти к условиям-равенствам ценой введения новых дополнительных переменных.

В зависимости от вида целевой функции и ограничений можно выделить несколько типов задач линейного программирования или линейных моделей: общая линейная задача, транспортная задача, задача о назначениях.

Транспортная задача (задача Монжа - Канторовича) - математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки.

Задача о назначениях формулируется следующим образом:

Имеется некоторое число работ и некоторое число исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами. Если число работ и исполнителей совпадает, то задача называется линейной задачей о назначениях.

Существует несколько способов решения задачи линейного программирования, в частности графический метод и симплекс-метод. Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется для решения задач двумерного пространства. Задачи трёхмерного пространства решаются очень редко, т.к. построение их решения неудобно и лишено наглядности. Рассмотрим метод на примере двумерной задачи.

Найти решение Х = (х 1 ,х 2), удовлетворяющее системе неравенств (3)

(3)
6x 1 +7x 2 ≤42

при котором значение целевой функции F = 2x 1 x 2 достигает максимума.

Построим на плоскости в декартовой прямоугольной системе координат х 1 Ох 2 область допустимых решений задачи.

Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой нет. Чтобы определить искомую полуплоскость нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей и проверить: удовлетворяют ли её координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка. В противном случае другая полуплоскость.

Найдём полуплоскость, определяемую неравенством x 1 -x 2 ≥-3. Для этого, построив прямую (I) x 1 -x 2 =-3, возьмём какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например, точку O(0,0). Координаты этой точки удовлетворяют неравенству x 1 -x 2 ≥-3. Значит полуплоскость, которой принадлежит точка O(0,0) определяется неравенством x 1 -x 2 ≥-3.

Теперь найдём полуплоскость, определяемую неравенством 6x1+7x 2 ≤42.

Строим прямую II 6x 1 +7x 2 =42. Координаты точки O(0,0) удовлетворяют неравенству6x 1 +7x 2 ≤42, а значит, искомой будет вторая полуплоскость.

Теперь ищем полуплоскость для неравенства 2 x 1 -3 x 2 ≤6. Координаты точки O(0,0) удовлетворяют неравенств 2 x 1 -3 x 2 ≤6. Следовательно, полуплоскость, которой принадлежит точка O(0,0) определяется неравенством 2 x 1 -3 x 2 ≤6 (Прямая III).

И полуплоскость для неравенства x 1 + x 2 ≥4. Координаты точки О(0,0) удовлетворяют неравенству x 1 + x 2 ≥4 (Прямая IV). Отсюда прямая x 1 + x 2 =4 определяется первой полуплоскостью.

Неравенства x 1 ≥0 и x 2 ≥0 означают, что область решения будет расположена справа от оси ординат и над осью абсцисс. Таким образом, заштрихованная на рисунке 3 область ABCD будет областью допустимых решений, определённой ограничениями задачи. Целевая функция принимает свое максимальное значение в одной из вершин фигуры ABCD. Для определения этой вершины, построим вектор С (2; -1) и прямую 2x 1 -x 2 =р, где pнекоторая постоянная такая, что прямая2x 1 -x 2 =p имеет общие точки с многоугольником решений. Положим, например, p=1/2 и построим прямую 2 x 1 -x 2 =1/2. Далее, будем передвигать построенную прямую в направлении вектора , до тех пор, пока она не пройдет через последнюю ее общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

На рисунке 3 видно, что последней общей точкой прямой 2x 1 -x 2 =p с многоугольником решений является точка A. Эта точка является местом пересечения прямой II и III, поэтому ее координаты находятся как решение системы уравнений, задающих эти прямые:

(4)
6x 1 +7x 2 =42

При этом значение целевой функции F = 2 x 1 -x 2 = 2* 5.25 – 1 *1.5 = 9.

Точка B будет оптимальным решением задачи Х опт = (х 1опт, х 2опт) и ее координаты будут равны х 1опт =5.25, х 2 опт =1.5.

Рисунок 3 - Область допустимых решений задачи

Симплекс - метод

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

1) Указать способ нахождения оптимального опорного решения.

2) Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения.

3) Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или сделать заключение об отсутствии оптимального решения.

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

1) Привести задачу к каноническому виду.

2) Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решения ввиду несовместимости системы ограничений).

3) Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода.

4) Если выполняется признак единственности оптимального решения, то решение задачи заканчивается. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.

Вычислительная эффективность математических методов оценивается обычно при помощи двух параметров:

1) Числа итераций, необходимого для получения решения;

2) Затрат машинного времени.

В результате численных экспериментов получены результаты для симплекс-метода:

1) Число итераций при решении задач линейного программирования в стандартной форме с ограничениями и переменными заключено между и . Среднее число итераций . Верхняя граница числа итераций равна .

2) Требуемое машинное время пропорционально .

Число ограничений больше влияет на вычислительную эффективность, чем число переменных, поэтому при формулировке задач линейного программирования нужно стремиться к уменьшению числа ограничений пусть даже путём роста числа переменных.


Основные понятия метода имитационного моделирования.

Под термином «имитационное моделирование» («имитационная модель») обычно подразумевают вычисление значений некоторых характеристик развивающегося во времени процесса путем воспроизведения течения этого процесса на компьютере с помощью его математической модели, причем получить требуемые результаты другими способами или невозможно, или крайне затруднительно. Воспроизведение течения процесса на компьютере с помощью математической модели принято называть имитационным экспериментом.

Имитационные модели относятся к классу моделей, которые являются системой соотношений между характеристиками описываемого процесса. Эти характеристики разделяют на внутренние («эндогенные», «фазовые переменные») и внешние («экзогенные», «параметры»). Приблизительно внутренние характеристики - это те, значения которых намереваются узнать с помощью средств математического моделирования; внешние - такие, от которых внутренние характеристики существенно зависят, но обратная зависимость (с практически приемлемой точностью) не имеет места.

Модель, способная давать прогноз значений внутренних характеристик, должна быть замкнутой («замкнутая модель»), в том смысле, что ее соотношения позволяют вычислять внутренние характеристики при известных внешних. Процедура определения внешних характеристик модели называется ее идентификацией, или калибровкой. Математические модели описанного класса (к ним относят имитационные модели) определяют отображение, позволяющее получить по известным значениям внешних характеристик значения внутренних. Далее это отображение будет называться отображением, ассоциированным с моделью.

В основе моделей рассматриваемого класса лежит постулат о независимости внешних характеристик от внутренних, а соотношения модели являются формой записи ассоциированного с ней отображения. Как показано на рисунке 4 в процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:

Реальная система;

Логико-математическая модель моделируемого объекта;

Имитационная (машинная) модель;

ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико или логико-математических моделей, описываемых изучаемый процесс. Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени. Составной характер сложной системы описывает представление ее модели в виде трех множеств:A, S, T, где
А – множество элементов (в их число включается и внешняя среда);
S – множество допустимых связей между элементами (структура модели);
Т – множество рассматриваемых моментов времени.

Рисунок 4 Процесс имитационного моделирования

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

С сохранением их логической структуры;

С сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.

Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений. В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий).

Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события. Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем. Имитационная модель содержит элементы непрерывного и дискретного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование - эффективный аппарат исследования стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных. Имитационное моделирование является важным фактором в системах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных.

Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если?”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует). В имитационной модели может быть обеспечен различный, в том числе и высокий уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно.


СПИСОК ЛИТЕРАТУРЫ

1. Блинов, Ю.Ф. Методы математического моделирования [Текст] : Электронное учебное пособие / Ю.Ф. Блинов, В.В. Иванцов, П.В. Серба. –Таганрог: ТТИ ЮФУ, 2012. –42 с.

2. Вентцель, Е.С. Исследование операций. Задачи, принципы, методология. [Текст] : Учебное пособие / Е.С. Вентцель - М. : КНОРУС, 2010. - 192 с.

3. Гетманчук, А. В. Экономико-математические методы и модели [Текст]: Учебное пособие для бакалавров. / А.В. Гетманчук - М. : Издательско-торговая корпорация «Дашков и Ко», 2013. -188 с.

4. Замятина, О.М. Моделирование систем. [Текст] : Учебное пособие. / О.М. Замятина – Томск: Изд-во ТПУ, 2009. – 204 с.

5. Павловский, Ю.Н. Имитационное моделирование. [Текст] : учебное пособие для студентов ВУЗов / Ю.Н.Павловский, Н.В.Белотелов, Ю.И.Бродский - М. : Издательский центр «Академия», 2008. – 236 с.

Мастер – класс

« Использование моделирования в обучении математике»

Цель:

Содействовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

Задачи:

Создать условия для организации работы по освоению педагогами учебных моделей и определению возможностей и эффективности их применения в процессе обучении математике.

    Организационный этап.

Создание психологической готовности участников мастер-класса к совместной работе.

– Уважаемые коллеги, здравствуйте! Я рада приветствовать вас на своём мастер-классе.

Тема моего мастер-класса «Использование моделирования в обучении математике ».

Перед вами лежит таблица-фиксация знаний, заполните, пожалуйста, вторую графу «Знаю» по данной теме и отложите.

Хочу узнать

Моделирование

Моя цель: Способствовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

А Ваша цель? (ответы)

2. Актуальность.

- Как вы думаете, почему именно математика так широко представлена в программе начального образования?

Математика как учебный предмет в начальной школе призвана максимально развивать личность младшего школьника, способствовать становлению его самостоятельности в учебно-познавательной деятельности, поэтому она широко представлена в программе начального образования: 4 часа в неделю или 536 часов за курс начальной школы. Задача учителя начальной школы – сформировать у всех детей базовый уровень математических представлений и способов деятельности, необходимых для социальной адаптации в обществе. Решение этой задачи часто вызывает большие трудности, так как ни один из математических объектов в реальной действительности не существует, а мышление детей младшего школьного возраста по преимуществу наглядно-образное, способности даже к простейшему осмыслению математического материала весьма различны.

Поэтому современные требования к формированию умственных действий на уроках математики требуют применения наиболее эффективных методов и приёмов обучения. Одним из них является метод моделирования.

Метод моделирования стал одним из основных методов научного исследования. Этот метод в отличие от других является всеобщим, используется во всех науках, на всех этапах научного исследования. Он обладает огромной эвристической силой, позволяет свести изучение сложного к простому, невидимого и неощутимого – к видимому и ощутимому, незнакомого – к знакомому, т.е. сделать сложное явление реальной действительности доступным для тщательного и всестороннего изучения. В связи с этим применение моделей и моделирования в обучении, по мнению большинства ученых теоретиков, приобретает особое значение для повышения теоретического уровня педагогической науки и практики.

Необходимость овладения младшими школьниками методом моделирования как методом познания в процессе обучения можно обосновать с разных позиций.

- Как вы думаете с каких?

Во-первых, как показывают эксперименты, введение в содержание обучения понятий модели и моделирования существенно меняет отношение учащихся к учебному предмету, делает их учебную деятельность более осмысленной и более продуктивной.

Во-вторых, целенаправленное и систематическое обучение методу моделирования приближает младших школьников к методам научного познания, обеспечивает их интеллектуальное развитие.

- В определении моделирования вставьте пропущенные слова.

«Моделирование – это метод опосредованного познания, при котором изучается не интересующий нас объект, а его заместитель (модель ), находящийся в некотором объективном соответствии с познавательным объектом, способный замещать его в определённых отношениях и дающий при этом новую информацию об объекте» (Л. М. Фридман) Слайд 2

При введение моделирования в содержание обучения математике важно, чтобы учащиеся сами овладели методом моделирования, научились строить и преобразовывать модели, отражая различные отношения и закономерности, сами изучали какие-либо объекты, явления с помощью моделирования.

Когда учащиеся, решая практическую математическую задачу, понимают, что она представляет собой знаковую модель некоторой реальной ситуации, составляют последовательность различных ее моделей, затем изучают (решают) эти модели и, наконец, переводят полученное решение на язык исходной задачи, то тем самым школьники овладевают методом моделирования.

    Знакомство с видами моделей.

- Какие виды моделей вы знаете и применяете на практике? (при затруднении предлагается выбрать из предложенных вариантов: вербальные, словесные, иллюстрационные, предметные, эвристические, схематические, математические, геометрические)

Виды моделей: вербальные, предметные, схематические, математические.

Можно выделить четыре модели, которые используются при работе над задачей на уроках математики: предметные, вербальные, схематические, математические.

Составляется кластер. (Сначала самостоятельно, а в процессе работы изменяется, пополняется, исправляются недочёты.)

Примерами предметных моделей могут быть сюжетные иллюстрации, отдельные предметы или их изображения. Слайд 3

К группе вербальных моделей мы относим в первую очередь сам текст задачи, кроме того, различные виды кратких записей текста задачи. Для некоторых текстовых задач более удобной формой вербальной модели является таблица. Слайд 4

Коля – 3

Таня - ?, на 2больше

Всего - ?

Схематические модели служат для визуального представления задачной ситуации, но здесь используются не конкретные предметы и их изображения, а различного рода условные обозначения, которые заменяют реальные предметы(например, круги, квадраты, отрезки, точки и т.п.).

Наиболее распространённые в начальной школе модели этого вида – схематические иллюстрации и схематические чертежи. Слайд 6

Под математическими моделями надо понимать математические выражения или равенства (3+4, 3+5=8). Слайд 7

Математическое выражение (например, запись вида 5+3);

Математическое равенство (например, запись вида 5+3=8).

(Раздаточный материал для групп «Виды моделей»)

4.Действия которые можно проводить с моделями.

Чтобы процесс переходов от одной модели к другой при решении текстовой задачи был продуманным, хорошо организованным и эффективным, важно разработать комплекс дидактических заданий по работе с учебными моделями.

- Давайте уточним, какие действия можно проводить с моделями?

1)Задания на соотнесение моделей: Слайд 8

при выполнении заданий на соотнесение моделей ребёнок должен определить, соответствуют ли друг другу предложенные для сравнения модели, и объяснить, почему соответствие есть или отсутствует. Например, дан рисунок, схема и равенство. Ученик рассказывает, почему схема подходит к рисунку и к равенству. Слайд 9

2) Задания на построение модели:

самостоятельно построить на парте из геометрических фигур схему, соответствующую рисунку, тексту задачи или математической записи, составить математическое выражение, соответствующее предложенному рисунку, схеме или тексту задачи. Слайд 10

3) Задания на выбор модели:

при выполнении заданий этой группы дети из нескольких предложенных вариантов выбирают тот, который соответствует другой модели. Слайд 11

4) Примеры заданий на изменение модели:

изменить предложенную схему так, чтобы новая схема соответствовала сюжетной иллюстрации, тексту задачи, числовому выражению или равенству;

изменить предложенный текст задачи так, чтобы новый текст соответствовал сюжетной иллюстрации, схеме, числовому выражению. Слайд 12

Многие задания в учебнике можно дифференцировать.

Использование учебных моделей позволяет сделать более доступным для ребёнка восприятие и понимание текста задачи, поскольку модели помогают визуализировать скрытые при непосредственном наблюдении связи и отношения, представленные в тексте задачи.

Благодаря возможности наглядно представлять наиболее существенные характеристики изучаемого объекта, модель служит весьма продуктивным видом визуализации.

Поскольку мышление детей младшего школьного возраста по преимуществу наглядно-образное, опора на модели делает возможным приобщение учеников к некоторым (пусть самым простым) теоретическим обобщениям. Это весьма значимо на первых шагах обучения решению задачи. Однако для того, чтобы работа с моделями приводила к максимальной «отдаче», их применение должно быть последовательным и систематическим.

Слайд 13 (пустой)

(Раздаточный материал « Группы заданий, ориентированных на выполнение одного из следующих действий:….»

5. Группы заданий, ориентированных на выполнение одного из следующих действий:

- задания на соотнесение моделей:

1. Соотнесение предметной и вербальной моделей.

2. Соотнесение предметной и схематической моделей. Подходит ли схема к рисунку?

3.Соотнесение предметной и математической моделей.

Верно ли составлен пример к рисунку?

4.Соотнесениевербальной и математической моделей.

Верно ли Ваня решил задачу?

5.Соотнесение вербальной и схематической моделей.

Проверь, верно ли Петя составил схему к задаче.

6.Соотнесение схематической и математической моделей.

Верно ли составлен пример к схеме

- выбор модели:

1. Задания на выбор модели при сравнении предметных и вербальных моделей.

Какая краткая запись подходит к рисунку?

2. Задания на выбор модели при сравнении предметных и схематических моделей.

Выбери схему к рисунку.

3. Задания на выбор модели при сравнении предметных и математических моделей.

Какой пример подходит к рисунку?

4.Задания на выбор модели при сравнении вербальных и математических моделей.

Выбери верное решение задачи .

5. Задания на выбор модели при сравнении вербальных и схематических моделей.

Выбери схему

6. Задания на выбор модели при сравнении схематических и математических моделей.

Какой пример подходит к схеме?

- изменение модели:

1. Задание на изменение модели в паре « Предметная модель – вербальная модель»

Измени рисунок так, чтобы он соответствовал тексту задачи. Или наоборот.

Измени краткую запись, чтобы она подходила к рисунку

2. Задание на изменение модели в паре « Предметная модель – схематическая модель»

Дополни схему

3. Задание на изменение модели в паре « Предметная модель – математическая модель»

Петя записал пример к рисунку. Часть примера не видна. Дополни запись.

4. Задание на изменение модели в паре « Вербальная модель – математическая модель»

Измените текст задачи, чтобы она решалась так:

5. Задание на изменение модели в паре « Вербальная модель – схематическая модель »

Исправь схему

6. . Задание на изменение модели в паре « Схематическая модель – математическая модель»

Катя сделала схему, исправь её ошибку.

- Дополни условие и вопрос, чтобы задача решалась сложением.

- Измени схему так, чтобы показать её с помощью действия вычитания

- построение модели:

1.Задание на построение модели в паре « Предметная модель – вербальная модель»

Составь задачу по рисунку или сделай рисунок к тексту задачи (краткой записи)

2. Задание на построение модели в паре « Предметная модель – схематическая модель»

Составь схему к предложенному рисунку или, наоборот, сделай рисунок к предложенной схеме

3.Задание на построение модели в паре « Предметная модель – математическая модель»

Составь пример к рисунку

4.Задание на построение модели в паре «Вербальная модель – математическая модель»

Составь задачу, которая решается так 5. Задание на построение модели в паре « Вербальная модель – схематическая модель»

Составь задачу по схеме

Составь пример по схеме или схему к выражению

6. Работа в группах:

Задания для работы в группах

1) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

2) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

а) Подходит ли схема к рисунку?

б)Проверь, верно ли Катя составила схему к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли краткая запись к рисунку?

д) Верно ли составлен пример к рисунку?

е) Верно ли составлен пример к схеме?

3) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и схематической моделей при работе над задачей.

а) Верно ли составлен пример к схеме?

б) Подходит ли рисунок к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли схема к рисунку?

д) Верно ли составлен пример к рисунку?

е) Проверь, верно ли Катя составила схему к задаче?

1) Определите задание на выбор модели . Слайд 14

    Определите задание на соотнесение моделей . Слайд 15

3) Определите задание на построение моделей. Слайд 16

7.Методические варианты использования моделей. Слайд 17

Методические варианты использования моделей: репродуктивно-наглядный, продуктивно-наглядный, репродуктивно-практический, продуктивно-практический. Рассмотрим примеры использование моделей для поиска решения текстовой задачи: « У Коли 3 яблока, а у Лены 2 яблока. Сколько яблок у детей вместе?»

Вариант 1. Репродуктивно-наглядный

Учитель демонстрирует модель (на доске, наборном полотне) и на её основе даёт словесное объяснение о способе решения задачи. При этом объяснение выступает репродуктивной передачей информации от учителя к детям.

Ребята, я располагаю на наборном полотне 3 кружка слева, потому что у нас в задаче сказано, что у Коли было 3 яблока, и 2 кружка справа - столько яблок, по условию задачи у Лены. В задаче нужно узнать, сколько всего яблок у детей, поэтому я придвину кружки друг к другу. Значит, эта задача решается с помощью действия сложения. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 2. Продуктивно-наглядный

Учитель демонстрирует модель (на доске, на наборном полотне) и в процессе её построения проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи. Здесь используется продуктивная форма получения знания.

Пример объяснения решения задачи:

Дети, сейчас я покажу слева яблоки Коли, а справа яблоки Лены. Сколько кружков я должна поставить слева? Почему? (После ответов детей учитель располагает на наборном полотне 3 кружка слева.) Сколько кружков нужно расположить на наборном полотне справа? Почему? (После ответов детей учитель располагает на наборном полотне 2 кружка справа.) Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? (После ответов детей учитель придвигает одни кружки к другим). Каким действием решается задача? Почему? Как запишем решение задачи?

Вариант 3. Репродуктивно-практический

Учитель строит модель (на доске, на наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В ходе построения модели учитель даёт словесное объяснение репродуктивного характера о способе решения задачи.

Пример объяснения решения задачи:

Дети, сейчас я на наборном полотне поставлю 3 кружка слева, потому что, по условию задачи, у Коли было 3 яблока, а 2 кружка справа – столько яблок у Лены. Положите вместе со мной 3 кружка на парте слева, а 2 кружка на парте справа. В задаче нужно узнать, сколько всего яблок у детей. Поэтому я придвину кружки друг к другу и вы тоже на партах придвиньте свои кружки друг к другу. Так как мы с вами придвигаем кружки, задача решается сложением. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 4. Продуктивно - практический

Учитель строит модель (на доске, наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В процессе построения модели учитель проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи.

Пример объяснения решения задачи

Дети, давайте покажем слева яблоки Коли, а справа яблоки Лены. Сколько кружков мы должны показать слева? Почему? Давайте вместе сделаем это: я поставлю кружки слева на наборном полотне, а вы положите их слева у себя на парте.

Сколько кружков мы должны показать справа? Почему? Давайте вместе сделаем это: я поставлю кружки справа на наборном полотне, а вы положите их справа у себя на парте. Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? Правильно, нужно придвинуть кружки друг к другу. Давайте вместе сделаем это: я на наборном полотне, а вы у себя на партах. Что мы сделали, чтобы найти ответ к задаче? Значит, каким действием решается задача? Как запишем решение задачи?

При объяснении трудного для детей материала рекомендуется чаще использовать продуктивно – практический вариант моделирования, поскольку при этом обеспечивается эвристическая форма передачи информации («субъективное открытие знания») и практическая деятельность ребёнка по построению и преобразованию моделей, что особенно важно для ребёнка со средними или слабыми математическими способностями.

8. Конструкции текста задачи: Слайд 18

(Раздаточный материал для учителей)

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный вопросительным предложением; наиболее часто встречающаяся конструкция текста.

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный повествовательным предложением.

    Часть условия выражена в повествовательной форме в начале текста, затем вопросительное предложение, включающее вопрос и часть условия.

    Часть условия выражена в повествовательной форме, затем следует также повествовательное предложение, включающее вопрос и часть условия.

    Текст задачи представляет одно сложное вопросительное предложение, в котором сначала стоит вопрос задачи, затем условие.

9. Задания для работы в группах:

1 . Каждой группе подобрать из учебника или составить задачу 2,3,4,5 конструкций.

2. Практикум « Виды работ над задачей»

1) на нахождение остатка (опорное слово: осталось)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1(блок « Задания на изменение модели»)

    изменить конструкцию задачи

2)на нахождение суммы (опорное слово: стало)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 2 (блок « Задания на соотнесение модели»)

    изменить конструкцию задачи

3)на нахождение разности (опорное слово: на сколько)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1 (блок « Задания на построение модели»)

    изменить конструкцию задачи

10. Практикум «Разработка вспомогательных моделей, которые используются при решении задач в начальной школе» Объединение моделей в систему.

1 тип схем

a b

2 тип схем

?, на б/м

a b

3 тип схем

Было –

Стало --

a b

4 тип схем

Было –

Осталось --

a

b c

5 тип схем

a c

Рефлексия мастер-класса

Возьмите карточку с таблицей-фиксацией, если есть, чем дополнить, впишите в третий столбик. Кто может зачитать данные своей таблицы? (Ответы участников)

Метод « Чемодан, Корзина, Мясорубка»

Татьяна Портнова

Я представляю опыт работы ДОУ №17 "Рождественский" г. Петровска по теме метод моделирования как способ обучения дошкольников математики .

Одним из наиболее перспективных методов математического развития дошкольников является моделирование . МОДЕЛИРОВАНИЕ для дошкольников позволяет одновременно решить сразу несколько задач, главные из которых – это привить детям основы логического мышления, научить простому счету, облегчить ребенку познание. В результате знания ребенка поднимаются на более высокий уровень обобщения, приближаются к понятиям.

В своей работе я опиралась на метод моделирования , разработанный Д. Б. Элькониным, Л. А. Венгером, Н. А. Ветлугиной, он заключается в том, что мышление ребенка развивают с помощью специальных схем, моделей , которые в наглядной и доступной для него форме воспроизводят скрытые свойства и связи того или иного объекта.

Использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно :

Позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка;

Улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления;

Повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;

В своей работе я использую четырех ступенчатую последовательность применения метода моделирования .

Первый этап предполагает знакомство со смыслом арифметических действий.

Второй - обучение описанию этих действий на языке математических знаков и символов .

Третий - обучение простейшим приемам арифметических вычислений

Четвертый этап - обучение способам решения задач

Слайд 5 (фото дети модели делают )

Чтобы овладеть моделированием как методом научного познания , необходимо создавать модели . Создавать вместе с детьми и следить, чтобы дети принимали в изготовлении моделей непосредственное и активное участие. Продумывая разнообразные модели вместе с детьми , я придерживалась следующих требований :

Модель должна отображать обобщенный образ и подходить к группе объектов.

Раскрывать существенное в объекте.

Замысел по созданию модели следует обсудить с детьми, чтобы она была им понятна.

Моделирование как новый вид работы дает простор для творчества и фантазии детей, обеспечивая развитие их мышления.

Созданные нами модели многофункциональны . На основе моделей создаем разнообразные дидактические игры. При помощи картинок-моделей организовываем различные виды ориентированной деятельности детей. Модели использую на занятиях, в совместной с воспитателем и самостоятельной детской деятельности.

К созданию моделей подключаю родителей , которым даю задания по изготовлению несложных моделей (родители дома вместе с ребенком создают модель ) .

Таким образом, осуществляется взаимосвязь трех сторон :

родитель

и ребенок.


Хочу познакомить с моделями , которые я использую в работе с детьми.

Наглядная плоскостная модель "От секунды до года"

Цель применения :

Дать детям представления о временных отношениях, их взаимосвязи ;

Закрепить представления детей об отношении целого и части, научить обозначать в пространстве отношения во времени; совершенствовать счет.

Описание работы с моделью :

Знакомлю детей с моделью постепенно . Сначала знакомлю с самими терминами (секунда, минута, час, сутки, неделя, месяц, год) . Что по временным меркам больше, а что меньше, что во что входит.

Далее даю более четкие, узкие представления. Например, секунда - это почти самая маленькая временная единица, но если их 60, то они будут составлять большую временную единицу - минуту, и таким образом провожу работу до тех пор, пока дети не усвоят все термины, все взаимосвязи временных отношений, начиная от секунды и заканчивая годом.

Наглядная плоскостная модель

"Домик, где знаки и числа живут"

Цель применения :

Закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа;

Дать детям представления о неизменности числа, величины при условии различий в суммировании;

Учить или закреплять умение сравнивать числа (больше, меньше, равно) .

Структура модели : модель представляет собой 4-этажный домик, на каждом этаже расположено разное количество окошек, где будут жить знаки и цифры, но так как домик волшебный, то поселяться в домик знаки и цифры могут только с помощью детей. Окна в домике располагаются следующим образом :

Описание работы с моделью :


первый и второй этажи будут использоваться для решения задачи, которая состоит в том, чтобы дать детям представления о неизменности числа, величины при условии различий в суммировании. Например : 4 = 1 + 1 + 1 + 1; 4 = 2 + 2.


Третий этаж будет использоваться, чтобы научить детей (или закрепить умение) составлять числа из двух меньших, а также вычитать числа. Например, 3 + 5 = 8 или 7 - 4 = 3 и т. п.

Последний, четвертый, этаж будет использоваться, чтобы научить детей (или закрепить умение) сравнивать числа между собой, с помощью знаков "меньше", "больше" или "равно".


Модель можно использовать в любых видах деятельности : на занятиях, в свободной деятельности детей, при индивидуальной работе с детьми и т. д.

Слайд 11-12

Наглядная плоскостная модель "Солнечная система"

Только для детей старшей и подготовительной группы.

Цели применения :

Дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами) ;

Научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система) ;

Научить (или закрепить) умение детей определять последовательность ряда предметов по размеру ;

Развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других;

Совершенствовать порядковый и количественный счет;

Закрепить умение пользоваться условной меркой для измерения расстояний;

Закрепить умение решать арифметические задачи.

Структура модели :

модель представляет собой наглядную плоскостную схему, на которой изображена солнечная система. В дополнение к схеме имеется специальная карточка, которая предназначается для взрослого, где запечатлена информация о солнечной системе (небольшой рассказ о солнечной системе, размеры планет) . К модели прилагается комплекс смоделированных планет , при этом необходимо соблюдать пропорциональность их размеров друг к другу.

Описание работы с моделью :


Для решения задачи, необходимо объяснить детям, что все планеты солнечной системы и само солнце, конечно, - это одна целая группа (семья) . "У нашей звезды Солнце есть своя семья. В нее входит 9 планет, которые вращаются вокруг Солнца, то есть все эти 10 космических тел объединены в одну группу. Задания для детей :


1. разложить планеты в ряд, по мере увеличения размера планет или, наоборот, от самой большой планеты к самой маленькой.

2. определить местонахождение одной планеты относительно другой, ориентируясь по схеме : планета Земля находится левее планеты Юпитер и т. п.

3. Можно использовать условную мерку, например любую веревочку, линейку и т. д для измерения расстояний между планетами и звездой, между планетами и т. д.

4. Планеты можно пересчитывать как в прямом, так и в обратном порядке, можно составлять разного вида задачи и решать их, в солнечной системе крупных планет только 3, включая звезду, сколько тогда маленьких и т. п.

Слайд 13-14

Наглядная плоскостная модель "Счетный торт"

Цель применения :

Учить детей решать арифметические задачи и развивать познавательные способности ребенка;

Учить выделять математические отношения между величинами, ориентироваться в них.

Структура модели ,

модель включает в себя :

1. Пять наборов "сладких счетных частей", каждый из которых разделен на части (как на равные, так и на разные части) . Каждый счетный торт в виде круга, имеет свой цвет.

2. Овалы, вырезанные из белого картона, которые обозначают "целое" и "часть". В игровой ситуации они будут называться тарелочками, куда дети будут раскладывать куски счетного.

Описание работы с моделью :


в арифметической задаче математические отношения можно рассматривать как "целое" и "часть".

Сначала необходимо дать детям представления о понятии "целое" и "часть".

Положите перед детьми на тарелочку обозначающую "целое", счетный торт (все его части, скажите, что торт целый мама испекла и что мы его кладем строго на тарелочку, которая обозначает "целое". Теперь мы разрежем торт на две части, каждую из них назовем "часть". Объясните, что теперь, когда целое (целый торт) разделили на части (на 2 кусочка) то целого теперь нет, a есть только 2 части. Которые не могут оставаться на чужой тарелочке и их необходимо переложить на свои места - тарелочки, обозначающие "часть". Одну часть на одну тарелку, другую часть на другую тарелку. Затем соедините 2 куска опять вместе и покажите, что опять получилось целое. Таким образом, мы продемонстрировали, что соединение частей дает целое, а вычитание части из целого дает часть.




Слайд 15-16

Наглядная объемная модель "песочные часы"


Цель применения :

научить детей измерять время при помощи модели песочных часов ; активно включаться в процесс экспериментирования.

Структура модели :

модель объемная , трехмерная.

Чтобы можно было измерять время, необходимо открыть крышечку донца одной из бутылок и насыпать туда песка ровно столько, сколько его необходимо, чтобы за 1 минуту песок из одного отсека часов перешел в другой. Сделать это нужно путем экспериментирования.



писание работы с моделью :

с помощью модели песочных часов можно сначала провожу познавательное ознакомительное занятие. Показываю детям картинки с изображением разных песочных часов, потом демонстрирую модель , рассказываю о происхождения песочных часов, зачем они нужны, как ими пользоваться, как они работают. Затем вместе с детьми проводим эксперименты : например, эксперимент, доказывающий точность часов.

Таким образом, моделирование является важным учебным средством и действием, с помощью которого можно осуществлять различные учебные и развивающие цели и задачи,

Все формы использования моделирования дают положительные результаты в практическом применении, активизируя познавательную деятельность детей.