Проектирование и строительство домов

Проектирование и строительство домов

» » Анализ проблем использования математических моделей для снижения уровня неопределенности принятия ур. Характеристика основных типов комбинированных вероятностно-детерминированных математических моделей

Анализ проблем использования математических моделей для снижения уровня неопределенности принятия ур. Характеристика основных типов комбинированных вероятностно-детерминированных математических моделей

Модели систем, о которых мы говорили до сих пор, были детерминированными (определенными), т.е. задание входного воздействия определяло выход системы однозначно. Однако на практике так бывает редко: описанию реальных систем обычно присуща неопределенность. Например, для статической модели неопределенность можно учесть, записывая место (2.1) соотношение

где -погрешность, приведенная к выходу системы.

Причины неопределенности разнообразны:

– погрешности и помехи измерений входов и выходов системы (естественные погрешности);

– неточность самой модели системы, что заставляет искусственно вводить в модель погрешность;

– неполнота информации о параметрах системы и т.д.

Среди различных способов уточнения и формализации неопределенности наибольшее распространение получил хаотический (вероятностный) подход, при котором неопределенные величины считаются случайными. Развитый понятийный и вычислительный аппарат теории вероятностей и математической статистики позволяет дать конкретные рекомендации по выбору структуры системы и оценке ее параметров. Классификация стохастических моделей систем и методов их исследования представлена в табл. 1.4. Выводы и рекомендации основаны на эффекте усреднения: случайные отклонения результатов измерений некоторой величины от ее ожидаемого значения при суммировании взаимно уничтожаются, и среднее арифметическое большого числа измерений оказывается близким к ожидаемому значению. Математические формулировки этого эффекта даются законом больших чисел и центральной предельной теоремой. Закон больших чисел гласит, что если - случайные величины с математическим ожиданием (средним значением) и дисперсией , то



при достаточно больших N . Это говорит о принципиальной возможности сколь угодно точной оценки по измерениям. Центральная предельная теорема, уточняющая (2.32) утверждает, что

где - стандартная нормально распределенная случайная величина

Поскольку распределение величины хорошо извести и затабулировано (например, известно, что то соотношение (2.33) позволяет вычислять погрешность оценки. Пусть, например требуется найти, при каком числе измерений погрешность оценки их математического ожидания с вероятностью 0,95 окажется меньше, чем 0,01, если дисперсия каждого измерения равна 0,25. Из (2.33) получаем, что должно выполняться неравенство откуда N> 10000.

Разумеется, формулировкам (2.32), (2.33) можно придать более строгий вид, и это легко может быть сделано с помощью понятий вероятностной сходимости. Трудности возникают при попытке проверить условия этих строгих утверждений. Например, в законе больших чисел и централь ной предельной теореме требуется независимость отдельных измерений (реализаций) случайной величины и конечность ее дисперсии. Если эти условия нарушаются, то могут нарушаться и выводы. Например, если все измерения совпадают: то, хотя все остальные условия выполняются об усреднении не может быть и речи. Другой пример: закон больших чисел несправедлив, если случайные величины распределены по закону Коши (с плотностью распределения не обладающему конечными математическими ожиданием и дисперсией. А ведь такой закон встречается в жизни! Например, по Коши распределена интегральная освещенность точек прямолинейного берега равномерно вращающимся прожектором, находящимся в море (на корабле) и включающимся в случайные моменты времени.

Но еще большие трудности вызывает проверка обоснованности самого употребления термина «случайный». Что такое случайная величина, случайное событие и т.д. Часто говорят, что событие А случайно, если в результате эксперимента оно может наступить (с вероятностью р) или не наступить (с вероятностью 1-р). Все, однако, не так просто. Само по­нятие вероятности может быть связано с результатами экс­периментов лишь через частоту его наступления в некотором ряде (серии) экспериментов: , где N A - число экс­периментов, в которых событие наступило, N - общее число; экспериментов. Если числа при достаточно большом N приближаются к некоторому постоянному числу р А:

то событие А можно назвать случайным, а число р - его вероятностью. При этом частоты, наблюдавшиеся в различных сериях экспериментов, должны быть близки между собой (это свойство называется статистической устойчивостью или однородностью). Сказанное относится и к понятию случайной величины, поскольку величина является случайной, если случайными являются события {а<£<Ь} для любых чисел а , Ь. Частоты наступления таких событий в длинных сериях экспериментов должны группироваться около некоторых по­стоянных значений.

Итак, для применимости стохастического подхода должны выполняться следующие требования:

1) массовость проводимых экспериментов, т.е. достаточно большое число;

2) повторяемость условий экспериментов, оправдывающая сравнение результатов различных экспериментов;

3) статистическая устойчивость.

Стохастический подход заведомо нельзя применять к единичным экспериментам: бессмысленны выражения типа «вероятность того, что завтра будет дождь», «с вероятностью 0.8 «Зенит» выиграет кубок» и т.п. Но даже если массовость и повторяемость экспериментов имеются, статистической ус­тойчивости может и не быть, а проверить это - непростое дело. Известные оценки допустимого отклонения частоты от вероятности основаны на центральной предельной теореме или неравенстве Чебышева и требуют дополнительных гипотез о независимости или слабой зависимости измерений. Опытная же проверка условия независимости еще сложнее, так как требует дополнительных экспериментов.

Более подробно методология и практические рецепты применения теории вероятностей изложены в поучительной книге В.Н. Тутубалина , представление о которой дают приводимые ниже цитаты:

«Чрезвычайно важно искоренить заблуждение, встречающееся иногда у недостаточно знакомых с теорией вероятностей инженеров и естествоиспытателей, что результат любого эксперимента можно рассматривать как случайную величину. В особо тяжелых случаях к этому присоединяется вера в нормальный закон распределения, а если уже сами случайные величины не нормальны, то верят, что их логарифмы нормальны».

«По современным представлениям область применения теоретико-вероятностных методов ограничена явлениями, которым присуща статистическая устойчивость. Однако проверка статистической устойчивости трудна и всегда неполна к тому же часто она дает отрицательный вывод. В результате в целых областях знания, например, в геологии, нормой стал такой подход, при котором статистическая устойчивость вовсе не проверяется, что неизбежно приводит к серьезным ошибкам. К тому же пропаганда кибернетики, предпринятая нашими ведущими учеными, дала (в некоторых случаях!) несколько неожиданный результат: теперь считается, что только машина (а не человек) способна получать объективные научные результаты.

В таких обстоятельствах долг каждого преподавателя - вновь и вновь пропагандировать ту старую истину, которую еще Петр I пытался (безуспешно) внушить русским купцам: что торговать надо честно, без обмана, так как в конечном счете это для самих же себя выгоднее».

Как же построить модель системы, если неопределенность в задаче есть, но стохастический подход неприменим? Ниже кратко излагается один из альтернативных подходов, основанный на теории нечетких множеств.


Напоминаем, что отношением (отношением между и) называется подмножество множества. т.е. некоторая совокупности пар R={(x , у )}, где,. Например, функциональная связь (зависимость) может быть представлена как отношение между множествами, включающее пары (х , у ), для которых.

В простейшем случае может быть, a R - отношение тождества, если.

Примеры 12-15 в табл. 1. 1 придуманы в 1988 г. учеником 86 класса 292 школы М. Коротеевым.

Математик здесь, конечно, заметит, что минимум в (1.4), строго говоря, может не достигаться и в формулировке (1.4) нужно заменить rnin на inf («инфимум» - точная нижняя грань множества). Однако ситуация от этого не изменится: формализация в данном случае не отражает существа задачи, т.е. проведена неверно. В дальнейшем, чтобы не«пугать» инженера, мы будем пользоваться обозначениями min, max; имея в виду, что при необходимости их следует заменить на более общие inf, sup.

Здесь термин «структура» используется в смысле, несколько более узком, нем в подразд. 1.1, и означает состав подсистем в системе и типы связей между ними.

Графом называется пара (G , R ), где G={g 1 ... g n }- конечное множество вершин, a - бинарное отношение на G. Если, тогда и только тогда, когда, то граф называется неориентированным, в противном случае - ориентированным. Пары называются дугами (ребрами), а элементы множества G - вершинами графа.

То есть алгебраические или трансцендентные.

Строго говоря, счетное множество представляет собой некоторую идеализацию, которую невозможно реализовать практически из-за конечности размеров технических систем и пределов человеческого восприятия. Такие идеализированные модели (например, множество натуральных чисел N ={1, 2,...}) имеет смысл вводить для множеств конечных, но с за­ранее не ограниченным (или неизвестным) числом элементов.

Формально понятие операции является частным случаем понятия отношения между элементами множеств. Например, операция сложения Двух чисел задает 3-местное (тернарное) отношение R: тройка чисел (х, у, z ) z ) принадлежит отношению R (пишем (х,у,z)), если z = х+у.

Комплексное число, аргумент полиномов А (), В ().

Это предположение часто выполняется на практике.

Если величина неизвестна, то следует заменить в (2.33) на оценку где При этом величина будет распределена уже не нормально, а по закону Стьюдента, который при практически неотличим от нормального.

Легко заметить, что (2.34) есть частный случай (2.32), когда берется, если событие А наступило в j- м эксперименте, в противном случае.При этом

А сегодня можно добавить «... и информатики» (прим. автора).

Страница
6

Метод разработки решения. Некоторые решения, как правило, типичные, повторяющиеся, могут быть с успехом формализованы, т.е. приниматься по заранее определённому алгоритму. Другими словами, формализованное решение – это результат выполнения заранее определённой последовательности действий. Например, при составлении графика ремонтного обслуживания оборудования начальник цеха может исходить из норматива, требующего определённого соотношения между количеством оборудования и обслуживающим персоналом. Если в цехе имеется 50 единиц оборудования, а норматив обслуживания составляет 10 единиц на одного ремонтного рабочего, значит, в цехе необходимо иметь пять ремонтников. Точно так же, когда финансовый менеджер принимает решение об инвестировании свободных средств в государственные ценные бумаги, он выбирает между различными видами облигаций в зависимости от того, какие из них обеспечивают в данное время наибольшую прибыль на вложенный капитал. Выбор производится на основе простого расчета конечной доходности по каждому варианту и установления самого выгодного.

Формализация принятия решений повышает эффективность управления в результате снижения вероятности ошибки и экономии времени: не нужно заново разрабатывать решение каждый раз, когда возникает соответствующая ситуация. Поэтому руководство организаций часто формализует решения для определённых, регулярно повторяющихся ситуаций, разрабатывая соответствующие правила, инструкции и нормативы.

В то же время в процессе управления организациями часто встречаются новые, нетипичные ситуации и нестандартные проблемы, которые не поддаются формализованному решению. В таких случаях большую роль играют интеллектуальные способности, талант и личная инициатива менеджеров.

Конечно, на практике большинство решений занимает промежуточное положение между этими двумя крайними точками, допуская в процессе их разработки как проявление личной инициативы, так и применение формальной процедуры. Конкретные методы, используемые в процессе принятия решений, рассмотрены ниже.

· Количество критериев выбора .

Если выбор наилучшей альтернативы производится только по одному критерию (что характерно для формализованных решений), то принимаемое решение будет простым, однокритериальным. И наоборот, когда выбранная альтернатива должна удовлетворять одновременно нескольким критериям, решение будет сложным, многокритериальным. В практике менеджмента подавляющее большинство решений многокритериальны, так как они должны одновременно отвечать таким критериям, как: объем прибыли, доходность, уровень качества, доля рынка, уровень занятости, срок реализации и т.п.

· Форма принятия решений .

Лицом, осуществляющим выбор из имеющихся альтернатив окончательного решения, может быть один человек и его решение будет соответственно единоличным. Однако в современной практике менеджмента всё чаще встречаются сложные ситуации и проблемы, решение которых требует всестороннего, комплексного анализа, т.е. участия группы менеджеров и специалистов. Такие групповые, или коллективные, решения называются коллегиальными. Усиление профессионализации и углубление специализации управления приводят к широкому распространению коллегиальных форм принятия решений. Необходимо также иметь в виду, что определённые решения и законодательно отнесены к группе коллегиальных. Так, например, определённые решения в акционерном обществе (о выплате дивидендов, распределении прибыли и убытков, совершении крупных сделок, избрании руководящих органов, реорганизации и др.) отнесены к исключительной компетенции общего собрания акционеров. Коллегиальная форма принятия решении, разумеется, снижает оперативность управления и “размывает” ответственность за его результаты, однако препятствует грубым ошибкам и злоупотреблениям и повышает обоснованность выбора.

· Способ фиксации решения.

По этому признаку управленческие решения могут быть разделены на фиксированные, или документальные (т.е. оформленные в виде какого либо документа - приказа, распоряжения, письма и т.п.) , и недокументированные (не имеющие документальной формы, устные). Большинство решений в аппарате управления оформляется документально, однако мелкие, несущественные решения, а также решения, принятые в чрезвычайных, острых, не терпящих промедления ситуациях, могут и не фиксироваться документально.

· Характер использованной информации . В зависимости от степени полноты и достоверности информации, которой располагает менеджер, управленческие решения могут быть детерминированными (принятыми в условиях определённости) или вероятностными (принятыми в условиях риска или неопределённости). Эти условия играют чрезвычайно важную роль при принятии решений, поэтому рассмотрим их более подробно.

Детерминированные и вероятностные решения.

Детерминированные решения принимаются в условиях определённости, когда руководитель располагает практически полной и достоверной информацией в отношении решаемой проблемы, что позволяет ему точно знать результат каждого из альтернативных вариантов выбора. Такой результат только один, и вероятность его наступления близка к единице. Примером детерминированного решения может быть выбор в качестве инструмента инвестирования свободной наличности 20 % - ных облигаций федерального займа с постоянным купонным доходом. Финансовый менеджер в этом случае точно знает, что за исключением крайне маловероятных чрезвычайных обстоятельств, из-за которых правительство РФ не сможет выполнить свои обязательства, организация получит ровно 20 % годовых на вложенные средства. Подобным образом, принимая решение о запуске в производство определённого изделия, руководитель может точно определить уровень издержек производства, так как ставки арендной платы, стоимость материалов и рабочей силы могут быть рассчитаны довольно точно.

Анализ управленческих решений в условиях определенности это самый простой случай: известно количество возможных ситуаций (вариантов) и их исходы. Нужно выбрать один из возможных вариантов. Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов. Рассмотрим две возможные ситуации:

а) Имеется два возможных варианта;

В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов. Последовательность действий здесь следующая:

· определяется критерий по которому будет делаться выбор;

· методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов;

Возможны различные методы решения этой задачи. Как правило они подразделяются на две группы:

методы основанные на дисконтированных оценках;

методы, основанные на учетных оценках.

Математические модели в экономике и программировании

1. Детерминированные и вероятностные математические модели в экономике. Преимущества и недостатки

Методы исследования экономических процессов базируются на использовании математических - детерминированных и вероятностных - моделей, представляющих изучаемый процесс, систему или вид деятельности. Такие модели дают количественную характеристику проблемы и служат основой для принятия управленческого решения при поисках оптимального варианта. Насколько обоснованы эти решения, являются ли они лучшими из возможных, учтены ли и взвешены все факторы, определяющие оптимальное решение, каков критерий, позволяющий определить, что данное решение действительно наилучшее, - таков круг вопросов, имеющих большое значение для руководителей производства, и ответ на которые можно найти с помощью методов исследования операций [Чесноков С. В. Детерминационный анализ социально-экономических данных. - М.: Наука, 1982, стр. 45].

Одним из принципов формирования системы управления является метод кибернетических (математических) моделей. Математическое моделирование занимает промежуточное положение между экспериментом и теорией: нет необходимости строить реальную физическую модель системы, ее заменит математическая модель. Особенность формирования системы управления заключается в вероятностном, статистическом подходе к процессам управления. В кибернетике принято, что любой процесс управления подвержен случайным, возмущающим воздействиям. Так, на производственный процесс оказывают влияния большое количество факторов, учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным.

По этим причинам часто, говоря о математическом моделировании экономических процессов, имеют в виду именно вероятностные модели.

Опишем каждый из типов математических моделей.

Детерминированные математические модели характеризуются тем, что описывают связь некоторых факторов с результативным показателем как функциональную зависимость, т. е. в детерминированных моделях результативный показатель модели представлен в виде произведения, частного, алгебраической суммы факторов, или в виде любой другой функции. Данный вид математических моделей наиболее распространен, поскольку, будучи достаточно простыми в применении (по сравнению вероятностными моделями), позволяет осознать логику действия основных факторов развития экономического процесса, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Вероятностные математические модели принципиально отличаются от детерминированных тем, что в вероятностных моделях взаимосвязь между факторами и результирующим признаком вероятностная (стохастическая): при функциональной зависимости (детерминированные модели) одному и тому же состоянию факторов соответствует единственное состояние результирующего признака, тогда как в вероятностных моделях одному и тому же состоянию факторов соответствует целое множество состояний результирующего признака [Толстова Ю. Н. Логика математического анализа экономических процессов. - М.: Наука, 2001, с. 32-33].

Преимущество детерминированных моделей в простоте их применения. Основной недостаток - низкая адекватность реальной действительности, т. к., как было отмечено выше, большинство экономических процессов носит вероятностный характер.

Достоинством вероятностных моделей является то, что они, как правило, больше соответствуют реальной действительности (более адекватны), чем детерминированные. Однако, недостатком вероятностных моделей является сложность и трудоемкость их применения, так что во многих ситуациях достаточно бывает ограничиться детерминированными моделями.

2. Постановка задачи линейного программирования на примере задачи о пищевом рационе

Впервые постановка задачи линейного программирования в виде предложения по составлению оптимального плана перевозок; позволяющего минимизировать суммарной километраж, была дана в работе советского экономиста А. Н. Толстого в 1930 году.

Систематические исследования задач линейного программирования и разработка общих методов их решения получили дальнейшее развитие в работах российских математиков Л. В. Канторовича, В. С. Немчинова и других математиков и экономистов. Также методам линейного программирования посвящено много работ зарубежных и, прежде всего, американских ученых.

Задача линейного программирования состоит в максимизации (минимизации) линейной функции.

при ограничениях

причем все

Замечание. Неравенства могут быть и противоположного смысла. Умножением соответствующих неравенств на (-1) можно всегда получить систему вида (*).

Если число переменных системы ограничений и целевой функции в математической модели задачи равно 2, то её можно решить графически.

Итак, надо максимизировать функцию к удовлетворяющей системе ограничений.

Обратимся к одному из неравенств системы ограничений.

С геометрической точки зрения все точки, удовлетворяющие этому неравенству, должны либо лежать на прямой , либо принадлежать одной из полуплоскостей, на которые разбивается плоскость этой прямой. Для того чтобы выяснить это, надо проверить какая из них содержит точку ().

Замечание 2. Если , то проще взять точку (0;0).

Условия неотрицательности также определяют полуплоскости соответственно с пограничными прямыми . Будем считать, что система неравенств совместна, тогда полуплоскости, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты которых являются решением данной системы - это множество допустимых решений. Совокупность этих точек (решений) называется многоугольником решений. Он может быть точкой, лучом, многоугольником, неограниченной многоугольной областью. Таким образом, задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция принимает максимальное (минимальное) значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху (снизу). При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим прямую (где h - некоторая постоянная). Чаще всего берется прямая . Остается выяснить направление движения данной прямой. Это направление определяется градиентом (антиградиентом) целевой функции.

Вектор в каждой точке перпендикулярен прямой , поэтому значение f будет возрастать при перемещении прямой в направлении градиента (убывать в направлении антиградиента). Для этого параллельно прямой проводим прямые, смещаясь в направлении градиента (антиградиента).

Эти построения будем продолжать до тех пор, пока прямая не пройдет через последнюю вершину многоугольника решений. Эта точка определяет оптимальное значение.

Итак, нахождение решения задачи линейного программирования геометрическим методом включает следующие этапы:

Строят прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.

Находят полуплоскости, определяемые каждым из ограничений задачи.

Находят многоугольник решений.

Строят вектор .

Строят прямую .

Строят параллельные прямые в направлении градиента или антиградиента, в результате чего находят точку, в которой функция принимает максимальное или минимальное значение, либо устанавливают неограниченность сверху (снизу) функции на допустимом множестве.

Определяют координаты точки максимума (минимума) функции и вычисляют значение целевой функции в этой точке.

Задача о рациональном питании (задача о пищевом рационе)

Постановка задачи

Ферма производит откорм скота с коммерческой целью. Для простоты допустим, что имеется всего четыре вида продуктов: П1, П2, П3, П4; стоимость единицы каждого продукта равна соответственно С1, С2, С3, С4. Из этих продуктов требуется составить пищевой рацион, который должен содержать: белков - не менее b1 единиц; углеводов - не менее b2 единиц; жиров - не менее b3 единиц. Для продуктов П1, П2, П3, П4 содержание белков, углеводов и жиров (в единицах на единицу продукта) известно и задано в таблице, где aij (i=1,2,3,4; j=1,2,3) - какие-то определённые числа; первый индекс указывает номер продукта, второй - номер элемента (белки, углеводы, жиры).

Любому реальному процессу свойственны случайные колебания, вызываемые физической изменчивостью каких- либо факторов во времени. Кроме того, могут существовать случайные внешние воздействия на систему. Поэтому при равном среднем значении входных в параметров в различные моменты времени выходные параметры будут неодинаковы. Следовательно, если случайные воздействия на исследуемую систему существенны, необходимо разрабатывать вероятностную (стохастическую) модель объекта, учитывая статистические законы распределения параметров системы и выбирая соответствующий математический аппарат.

При построении детерминированных моделей случайными факторами пренебрегают, учитывая лишь конкретные условия решаемой задачи, свойства и внутренние связи объекта (по этому принципу построены практически все разделы классической физики)

Идея детерминистических методов - в использовании собственной динамики модели при эволюции системы.

В нашем курсе эти методы представляют: метод молекулярной динамики , преимуществами которого являться: точность и определенность численного алгоритма; недостатком - трудоемкость из- за подсчета сил взаимодействия между частицами (для системы N частиц на каждом шаге нужно выполнить
операций подсчета этих сил).

При детерминистическом подходе задаються, и интегрируются по времени уравнения движения. Мы будем рассматривать системы из многих частиц. Положение частиц дают вклад потенциальной энергии в полную энергию системы, а их скорости определяют вклад кинетической энергии. Система движется вдоль траектории с постоянной энергией в фазовом пространстве (далее будут пояснения). Для детерминированных методов естественным является микроканонический ансамбль, энергия которого - это интеграл движения. Кроме того, можно исследовать и системы, для которых интегралом движения являться температура и (или) давление. В этом случае система незамкнута, и ее можно представить в контакте с тепловым резервуаром (канонический ансамбль). Для ее моделирования можно использовать подход, при котором мы ограничиваем ряд степеней свободы системы (например, задаем условие
).

Как мы уже отмечали, в случае, когда процессы в системе происходят непредсказуемо, такие события и связанные с ними величины называют случайными , а алгоритмы моделирования процессов в системе - вероятностными (стохастическими) . Греческое stoohastikos - означает буквально “тот, кто может угадать”.

Стохастические методы используют несколько иной подход, чем детерминистические: требуется насчитать лишь конфигурационную часть задачи. Уравнения для импульса системы всегда можно проинтегрировать. Проблема, которая затем встает - каким образом вести переходы от одной конфигурации к другой, которые в детерминистическом подходе определяться импульсом. Такие переходы в стохастических методах осуществляться при вероятностной эволюции в марковском процессе . Марковский процесс является вероятностным аналогом собственной динамики модели.

Этот подход имеет то преимущество, что позволяет моделировать системы, не имеющие какой - бы то ни было собственной динамики.

В отличие от детерминистических, стохастические методы на ПК реализуют проще, быстрее, однако для получения близких к истинным величин необходима хорошая статистика, что требует моделирования большого ансамбля частиц.

Примером полностью стохастического метода является метод Монте-Карло . Стохастические методы используют важную концепцию марковского процесса (марковской цепи). Марковский процесс является вероятностным аналогом процесса в классической механике. Марковская цепь характеризуется отсутствием памяти, т. е. статистические характеристики ближайшего будущего определяться только настоящим, без учета прошлого.

Практичне заняття 2.

Модель случайного блуждания

Пример (формальный)

Предположим, что в узлах двумерной решетки в произвольных позициях размещены частицы. На каждом временном шаге частица “прыгает” в одну из блажащих позиций. Значит, частица имеет возможность выбора направления прыжка в любое из четырех ближайших мест. После прыжка частица "не помнит", откуда она прыгнула. Этот случай соответствует случайному блужданию и является марковской цепью. Результатом на каждом шаге является новое состояние системы частиц. Переход из одного состояния в другое зависит только от предыдущего состояния, т. е. вероятность нахождения системы в состоянии i зависит только от состояния i-1.

Какие же физические процессы в твердом теле напоминают нам (подобие) описанной формальной модели случайного блуждания?

Конечно же, диффузионные, т. е. самые, процессы, механизмы которых мы рассматривали курсе тепло - массопереноса (3 курс). В качестве примера вспомним обычную классическую самодиффузию в кристалле, когда, не меняя своих видимых свойств атомы периодически меняют места временной оседлости и блуждают по решетке, с помощью так называемого “вакансионного” механизма. Он же - один из важнейших механизмов диффузии в сплавах. Явление миграции атомов в твердых телах играют решающую роль во многих традиционных и нетрадиционных технологиях - металлургии, металлообработке, создании полупроводников и сверхпроводников, защитных покрытий и тонких пленок.

Его открыл Роберт Аустен в 1896 году, наблюдая диффузию золота и свинца. Диффузия - процесс перераспределения концентраций атомов в пространстве путем хаотической (тепловой) миграции. Причины , с точки зрения термодинамики, могут быть две: энтропийная (всегда) и энергетическая (иногда). Энтропийная причина - это увеличение хаоса при перемешивании атомов резного сорта. Энергетическая - способствует образованию сплава, когда выгоднее быть рядом атомом разного сорта, и способствует диффузионному распаду, когда энергетический выиграш, обеспечивается размещением вместе атомов одного сорта.

Наиболее распространенными механизмами диффузии являются:

    вакансионный

    межузловой

    механизм вытеснения

Для реализации вакансионного механизма необходима хотя бы одна вакансия. Миграция вакансий осуществляется путем перехода в незанятый узел одного из соседних атомов. Атом же может осуществить диффузионный скачок, если рядом с ним оказалась вакансия. Вакансия см, с периодом тепловых колебаний атома в узле решеткис, при температуре Т=1330 К (на 6 К < точки плавления), число скачков, которое совершает вакансия в 1с, путь за одну секунду-см=3 м (=10 км/ч). По прямой же путь, проходимый вакансиейсм, т. е. в 300 раз короче пути по ломаной.

Природе понадобилось. чтобы вакансия в течении 1с раз изменила место оседлости, прошла по ломаной 3м, а сместилась по прямой всего лишь на 10 мкм. Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью примерно 1м/час.

Так. что достаточно одной вакансии на несколько тысяч атомов, чтобы при температуре, близкой к плавлению, перемещать атомы на микро уровне.

Сформируем теперь модель случайного блуждания для явления диффузии в кристалле. Процесс блуждания атома - хаотический и непредсказуемый. Однако для ансамбля блуждающих атомов должны проявляться статистические закономерности. Мы рассмотрим некоррелированные скачки.

Это значит, что если
и
- перемещение атомов приi и j-м скачках, то после усреднения по ансамблю блуждающих атомов:

(среднее произведение= произведению средних. Если блуждания полностью случайны, все направления равноправны и
=0.)

пусть каждая частица ансамбля совершает N элементарных скачков. Тогда ее полное перемещение равно:

;

а средний квадрат перемещения

Так как корреляции нет, то второе слагаемое =0.

Пусть каждый скачок имеет одинаковую длину h и случайное направление, а среднее число скачков в единицу времени- v. Тогда

Очевидно, что

Назовем величину
- коэффициентом диффузии блуждающих атомов. Тогда
;

Для трехмерного случая -
.

Мы получили параболический закон диффузии - средний квадрат смещения пропорционален времени блужданий.

Именно эту задачу нам предстоит решить на следующей лабораторной работе - моделирование случайных одномерных блужданий.

Численная модель.

Мы задаем ансамбль из М частиц, каждая из которых совершает N шагов, независимо друг от друга, вправо или влево с одинаковой вероятностью. Длина шага = h.

Для каждой частицы вычисляем квадрат смещения
заN шагов. Затем проводим усреднение по ансамблю -
. Величина
, если
, т. е. Средний квадрат смещения пропорционален времени случайных блужданий
- среднее время одного шага) - параболический закон диффузии.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ

2.1. Постановка задачи

Детерминированные модели описывают процессы в детерминированных системах.

Детерминированные системы характеризуются однозначным соответствием (соотношением) между входными и выходными сигналами (процессами).

Если задан входной сигнал такой системы, известны ее характеристикаy = F(x), а также ее состояние в начальный момент времени, то значение сигнала на выходе системы в любой момент времени определяется однозначно (рис. 2.1).

Существует два подхода к исследованию физических систем: детерминированный и стохастический.

Детерминированный подход основан на применении детерминированной математической модели физической системы.

Стохастический подход подразумевает использование стохастической математической модели физической системы.

Стохастическая математическая модель наиболее адекватно (достоверно) отображает физические процессы в реальной системе, функцио-нирующей в условиях влияния внешних и внутренних случайных факторов (шумов).

2.2. Случайные факторы (шумы)

Внутренние факторы

1) температурная и временная нестабильность электронныхкомпонентов;

2) нестабильность питающего напряжения;

3) шум квантования в цифровых системах;

4) шумы в полупроводниковых приборах в результате неравномерности процессов генерации и рекомбинации основных носителей заряда;

5) тепловой шум в проводниках за счет теплового хаотического движения носителей заряда;

6) дробовой шум в полупроводниках, обусловленный случайным характером процесса преодоления носителями потенциального барьера;

7) фликкер – шум, обусловленный медленными случайными флуктуациями физико-химического состояния отдельных областей материалов электронных устройств и т. д.

Внешние факторы

1) внешние электрические и магнитные поля;

2) электромагнитные бури;

3) помехи, связанные с работой промышленности и транспорта;

4) вибрации;

5) влияние космических лучей, тепловое излучение окружающих объектов;

6) колебания температуры, давления, влажности воздуха;

7) запыленность воздуха и т. д.

Влияние (наличие) случайных факторов приводит к одной из ситуаций, приведенных на рис. 2.2:

Следовательно, предположение о детерминированном характере физической системы и описание ее детерминированной математической моделью являетсяидеализацией реальной системы. Фактически имеем ситуацию, изображенную на рис. 2.3.

Детерминированная модель допустима в следующих случаях:

1) влияние случайных факторов столь незначительно, что пренебрежение ими не приведет к ощутимому искажению результатов моделирования.

2) детерминированная математическая модель отображает реальные физические процессы в усредненном смысле.

В тех задачах, где не требуется высокой точности результатов моделирования, предпочтение отдается детерминированной модели. Это объясняется тем, что реализация и анализ детерминированной математической модели много проще, чем стохастической.

Детерминированная модель недопустима в следующих ситуациях: случайные процессы ω(t) соизмеримы с детерминированными x(t). Результаты, полученные с помощью детерминированной математической модели, будут неадекватными реальным процессам. Это относится к системам радиолокации, к системам наведения и управления летательными аппаратами, к системам связи, телевидению, к системам навигации, к любым системам, работающим со слабыми сигналами, в электронных устройствах контроля, в прецизионных измерительных устройствах и т. д.

В математическом моделировании случайный процесс часто рассматривают как случайную функцию времени, мгновенные значения которой являются случайными величинами.

2.3. Суть стохастической модели

Стохастическая математическая модель устанавливает вероятностные соотношения между входом и выходом системы . Такая модель позволяет сделать статистические выводы о некоторых вероятностных характеристиках исследуемого процесса y(t):

1) математическое ожидание (среднее значение):

2) дисперсия (мера рассеивания значений случайного процесса y(t) относительно его среднего значения):

3) среднее квадратичное отклонение:

(2.3)

4) корреляционная функция (характеризует степень зависимости – корреляции – между значениями процесса y(t), отстоящими друг от друга на время τ):

5) спектральная плотность случайного процесса y(t) описывает его частотные свойства:

(2.5)

преобразование Фурье.

Стохастическаямодель формируется на основе стохастического дифференциального либо стохастического разностного уравнения.

Различают три типа стохастических дифференциальных уравнений: со случайными параметрами, со случайными начальными условиями, со случайным входным процессом (случайной правой частью). Приведем пример стохастического дифференциального уравнения третьего типа:

, (2.6)

где
аддитивный случайный процесс – входной шум.

В нелинейных системах присутствуют мультипликативные шумы .

Анализ стохастических моделей требует использования довольно сложного математического аппарата, особенно для нелинейных систем.

2.4. Понятие типовой модели случайного процесса. Нормальный (гауссовский) случайный процесс

При разработке стохастической модели важное значение имеет определение характера случайного процесса
. Случайный процесс может быть описан набором (последовательностью) функций распределения – одномерной, двумерной, … , n-мерной или соответствующими плотностями распределения вероятности. В большинстве практических задач ограничиваются определением одномерного и двумерного законов распределения.

В некоторых задачах характер распределения
априорно известен.

В большинстве случаев, когда случайный процесс
представляет собой результат воздействия на физическую систему совокупности значительного числа независимых случайных факторов, полагают, что
обладает свойствами нормального (гауссовского) закона распределения . В этом случае говорят, что случайный процесс
заменяется его типовой моделью – гауссовским случайным процессом. Одномерная плотность распределения вероятности нормального (гауссовского)случайного процесса приведена на рис. 2.4.

Нормальное (гауссовское) распределение случайного процесса обладает следующими свойствами .

1. Значительное количество случайных процессов в природе подчиняются нормальному (гауссовскому) закону распределения.

2. Возможность достаточно строго определить (доказать) нормальный характер случайного процесса.

3. При воздействии на физическую систему совокупности случайных факторов с различными законами распределения их суммарный эффект подчиняется нормальному закону распределения (центральная предельная теорема ).

4. При прохождении через линейную систему нормальный процесс сохраняет свои свойства в отличие от других случайных процессов.

5. Гауссовский случайный процесс может быть полностью описан с помощью двух характеристик – математического ожидания и дисперсии.

Впроцессе моделирования часто возникает задача –определить характер распределения некоторой случайной величины x по результатам её многократных измерений (наблюдений)
.Для этого составляют гистограмму – ступенчатый график, позволяющий по результатам измерения случайной величины оценить её плотность распределения вероятности.

При построении гистограммы диапазон значений случайной величины
разбивают на некоторое количество интервалов, а затем подсчитывают частоту (процент) попадания данных в каждый интервал. Таким образом, гистограмма отображает частоту попадания значений случайной величины в каждый из интервалов. Если аппроксимировать построенную гистограмму непрерывной аналитической функцией, то эта функция может рассматриваться как статистическая оценка неизвестной теоретической плотности распределения вероятности.

При формировании непрерывных стохастических моделей используется понятие «случайный процесс». Разработчики разностных стохастических моделей оперируют понятием «случайная последовательность».

Особую роль в теории стохастического моделирования играют марковские случайные последовательности. Для них справедливо следующее соотношение для условной плотности вероятности:

Из него следует, что вероятностный закон, описывающий поведение процесса в момент времени , зависит только от предыдущего состояния процесса в момент времени
и абсолютно не зависит от его поведения в прошлом (т. е. в моменты времени
).

Перечисленные выше внутренние и внешние случайные факторы (шумы) представляют собой случайные процессы различных классов. Другими примерами случайных процессов являются турбулентные течения жидкостей и газов, изменение нагрузки энергосистемы, питающей большое количество потребителей, распространение радиоволн при наличии случайных замираний радиосигналов, изменение координат частицы в броуновском движении, процессы отказов аппаратуры, поступления заявок на обслуживание, распределение числа частиц в малом объеме коллоидного раствора, задающее воздействие в радиолокационных следящих системах, процесс термоэлектронной эмиссии с поверхности металла и т. д.