Проектирование и строительство домов

Проектирование и строительство домов

» » Корреляционно-регрессионный анализ: пример, задачи, применение. Метод корреляционно-регрессионного анализа

Корреляционно-регрессионный анализ: пример, задачи, применение. Метод корреляционно-регрессионного анализа

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимоза­висимостях только формируются.

Умение работать с данной статистической техникой важно и в силу того, что она используется как со­ставная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати­стической взаимозависимости между двумя или более переменными. В слу­чае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух - множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» - они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколь­ко методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них - метод Пирсона (Pearson) . Его применение ограничено следующими условиями:

Переменные должны быть измерены, как минимум, на интер­вальном уровне;

Связь между переменными должна носить линейный характер, т.е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватно­го отображения;

Коэффициент Пирсона вычисляется по следующей формуле: ,

где Xj и у/ - значения двух переменных, х и у - их средние значения, sx и sy - их стан­дартные отклонения; п - количество пар значений.

Анализируемые переменные должны быть распределены нор­мально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статисти­ческой взаимосвязи между переменными:

Направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

Интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной пе­ременной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляцион­ного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный ана­лиз электората двух политических партий либеральной ориентации - Союза правых сил и «Яблока». Наша задача - понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федера­ции. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, по­скольку выборы в Чеченской Республике не проводились).

bgcolor=white>7.24
Случай Переменные (%)
«Яблоко» СПС
Республика Адыгея 4,63 3,92
Республика Алтай 3,38 5,40
Республика Башкортостан 3,95 6,04
Республика Бурятия 3,14 8,36
Республика Дагестан 0,39 1,22
Республика Ингушетия 2,89 0,38
Кабардино-Балкарская Республика 1,38 1,30
Республика Калмыкия 3,07 3,80
Карачаево-Черкесская Республика 4,17 2,94
Республика Карелия 9,66 10,25
Республика Коми 8,91 9,95
Республика Марий Эл 4,68
И т.д. (всего 88 случаев)

Таким образом, у нас есть две переменные - «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне реги­онов РФ.

Далее, в нашем распоряжении есть методический прием, кото­рый является одним из основных в статистике, - геометрическое представление. Геометрическим представлением называют представ­ление случая как точки в условном пространстве, формируемом «осями» - переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось Сформирует признак «поддержка СПС», ось Г- «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X- значение переменной «поддержка СПС» (процент, набранный в регионе дан­ной партией); по оси Г- значение переменной «поддержка "Ябло­ка"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай - (3,38; 5,4) и т.д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квад­ратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициен­те корреляции (обозначается г), который и является числовым ре­зультатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г= 1 связь приобретает характер функциональной - все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статис­тической связи (подробнее об интерпретации коэффициента кор­реляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффици­енте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак « + » традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчи­тать с помощью всех компьютерных пакетов программ статистическо­го анализа (SPSS, Statistica, NCSS и др.) и даже в широко распростра­ненной программе Excel (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод - именно зри­тельная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется беспо­лезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т.е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистра­ли», тенденции связи переменных. Это точка, представляющая дан­ные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт- Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоня­ющиеся наблюдения, т.е. произведя «чистку выбросов». В силу специ­фики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

Удалив только один из 88 случаев - Самарскую область, - мы по­лучим значение коэффициента корреляции, отличное от полученно­го ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 - это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской об­ластям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая ко­личество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых кри­териев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ - содержательно понять, с чем связано наличие «выброса». Так, в нашем примере не­типичное положение Самарской области в признаковом простран­стве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосо­вание за СПС и «Яблоко» довольно плотно коррелирует между собой на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие - в сельских районах. Мы можем выдвинуть гипотезу, что од­ним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего операционализировать через переменную «доля сельского населения» или «доля городского населения». Такая статистика существует по каждо­му субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная - пусть это будет «доля сельского населения».

Чисто технически мы можем вычислять каждый парный коэффици­ент корреляции отдельно, но удобнее сразу получить матрицу интер­корреляций (матрицу парных корреляций). Матрица обладает диаго­нальной симметрией. В нашем случае она будет выглядеть следующим образом:

Мы получили статистически значимые коэффициенты корреля­ции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Мож­но заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская области и Усть-Ордынский Бурятский АО) плотности коэффициента для СПС увеличивается до -0,65.

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых пе­ременных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на ос­нове значения коэффициента корреляции Пирсона.

Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Тра­диционной можно считать следующую схему интерпретации данного коэффициента:

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораз­до большей степени опирающихся на количественные данные, не­жели наука политическая (например, в экономике). В эмпиричес­ких исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 - случай просто уникаль­ный. Это связано прежде всего с особенностями мотивации поли­тического поведения - сложной, многофакторной, нередко ирра­циональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию, не может целиком подчи­няться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

0,4 > г> 0,3 - слабая корреляция;

0,6 > г> 0,4 - средняя корреляция;

Г> 0,7 - сильная корреляция.

Существует еще одна полезная процедура, позволяющая оце­нить значимость коэффициента корреляции в процессе вычисле­ния коэффициента детерминации, который представляет собой г, возведенный в квадрат (г 2). Смысл процедуры состоит в том, что при возведении в квадрат низкие коэффициенты потеряют «в весе»

гораздо сильнее, чем высокие. Так, 0,9 2 = 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2 = 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил -0,65. Коэффициент детерминации составляет соответственно -0,65 2 = 0,42. Несколько упрощая реальное положение дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.


1991 1993 1995 19961 1999 2000 2003 2004
1991 1
1993 0,83 1
1995 0,52 0,66 1
1996 0,43 0,47 0,76 і
1999 0,14 0,26 0,61 0,56 1
2000 0,13 0,15 0,34 0,47 0,74 1
2003 0,04 0,13 0,36 0,38 0,81 0,75 1
2004 0,04 0,10 0,11 0,21 0,55 0,66 0,73 1

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г= 0,76; 1999 - 2000: г = 0,74; 2003 - 2004: г= 0,73). На максимальной времен­ной дистанции - между президентскими и парламентскими выбора­ми 1991 - 1993 и 2003 - 2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени проис­ходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парла­ментских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определен­ная преемственность обнаруживается на протяжении восьми лет, в те­чение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свиде­тельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электораль­ной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим чис­лом категорий)?

гораздо сильнее, чем высокие. Так, 0,9 2= 0,81 (значение снижается всего на 0,09); 0,5 2= 0,25 (здесь мы теряем уже половину значения); 0,3 2= 0,09 (более чем трехкратная «потеря веса»). Когда речь идет о переменных, которые мы можем содержательно интерпретировать как «определяющие» и «определяемые», значение г2 будет показы­вать долю случаев, которые объясняет определяющая переменная.

В нашем примере коэффициент корреляции между переменными «поддержка СПС» и «доля сельского населения» после чистки вы­бросов составил -0,65. Коэффициент детерминации составляет соответственно -0,65 2= 0,42. Несколько упрощая реальное положе­ние дел, мы можем утверждать, что фактор урбанизации объясняет примерно 40% вариации переменной «голосование за СПС» по ре­гионам России в 1999 г.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обна­ружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной ха­рактеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных ре­гионов России.

Устойчивость пропорционального распределения явки по субъ­ектам Федерации достаточно просто проверяется методом корреля­ционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991 - 2004 гг. довольно четко демонстрирует существующую тенденцию. Статис­тическая связь наиболее сильна внутри одного электорального цик­ла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.

Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания так или иначе определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной . Если изучаются более чем две переменные – множественной .

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

Следует заметить, что традиционные методы корреляции и регрессии широко представлены в разного рода статистических пакетах программ для ЭВМ. Исследователю остается только правильно подготовить информацию, выбрать удовлетворяющий требованиям анализа пакет программ и быть готовым к интерпретации полученных результатов. Алгоритмов вычисления параметров связи существует множество, и в настоящее время вряд ли целесообразно проводить такой сложный вид анализа вручную. Вычислительные процедуры представляют самостоятельный интерес, но знание принципов изучения взаимосвязей, возможностей и ограничений тех или иных методов интерпретации результатов является обязательным условием исследования.

Методы оценки тесноты связи подразделяются на корреляционные (параметрические) и непараметрические. Параметрические методы основаны на использовании, как правило, оценок нормального распределения и применяются в случаях, когда изучаемая совокупность состоит из величин, которые подчиняются закону нормального распределения. На практике это положение чаще всего принимается априори. Собственно, эти методы – параметрические – и принято называть корреляционными.

Непараметрические методы не накладывают ограничений на закон распределения изучаемых величин. Их преимуществом является и простота вычислений.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ ИМЕНИ К.Г. РАЗУМОВСКОГО»

(ФГБОУ ВПО МГУТУ им К.Г. Разумовского)

Институт текстильной и легкой промышленности

Кафедра технологии кожи, меха и изделий из кожи


КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Методы и средства исследования»


Выполнила студентка

курса Страздина С.Ю.


Москва, 2013 г.

Задание 1.

Корреляционный анализ


Корреляционный анализ - это совокупность методов обнаружения так называемой корреляционной зависимости между случайными величинами.

Задачи корреляционного анализа сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.

Этапы проведения корреляционного анализа

Многофакторный корреляционный анализ позволяет установить наличие, тесноту и форму связи между факторами и изучаемым показателем. Он состоит из нескольких этапов, деление на которые условно, так как отдельные стадии тесно связаны между собой.

На первом этапе определяются цели и задачи исследования и на основе качественного анализа подбираются факторы, которые предположительно влияют на изучаемый показатель.

При их подборе необходимо учитывать:

наличие причинно-следственных связей между показателями;

значимость факторов, то есть степень их влияния на результативный показатель;

возможность количественного измерения фактора.

На втором этапе осуществляется сбор и первичная обработка исходной информации.

Совокупность данных должна быть достаточно большой. Информация должна соответствовать закону нормального распределения, согласно которому основная масса наблюдений по каждому показателю должна быть сгруппирована около его среднего значения.

Исходные данные должны быть качественно и количественно однородны. Качественная однородность предполагает приблизительно одинаковые условия и специфику формирования факторных и результативного признаков. Количественная однородность заключается в отсутствии таких наблюдений, которые значительно (аномально) отличаются от основной массы данных.

Критерием однородности информации служит среднеквадратическое отклонение и коэффициент вариации, которые рассчитываются по каждому факторному и результативному показателю. Среднеквадратическое отклонение показывает абсолютное отклонение индивидуальных значений от среднеарифметической, а коэффициент вариации характеризует относительную меру отклонения отдельных значений от среднеарифметической. Причем, чем больше коэффициент вариации, тем относительно больший разброс данных в совокупности.

Изменчивость вариационного ряда принято считать:

незначительной, если вариация не превышает 10%;

средней, если вариация составляет 10-20%;

значительной, если она больше 20%, но не превышает 33%. Если вариация больше 33 %, то следует исключить из выборки нетипичные наблюдения.

На третьем этапе осуществляется моделирование связей между факторами и результативным признаком, т.е. решается вопрос о выборе формы связи.

На основе экономического и логического анализа природы и сущности изучаемого явления подбирается тип математического уравнения, которое наилучшим образом отражает характер изучаемых зависимостей.

Функциональная зависимость и корреляция . Еще Гиппократ в VI в. до н. э. обратил внимание на наличие связи между телосложением и темпераментом людей, между строением тела и предрасположенностью к тем или иным заболеваниям. Определенные виды подобной связи выявлены также в животном и растительном мире. Так, существует зависимость между телосложением и продуктивностью у сельскохозяйственных животных; известна связь между качеством семян и урожайностью культурных растений и т.д. Что же касается подобных зависимостей в экологии, то существуют зависимости между содержанием тяжелых металлов в почве и снежном покрове от их концентрации в атмосферном воздухе и т.п. Поэтому естественно стремление использовать эту закономерность в интересах человека, придать ей более или менее точное количественное выражение.

Как известно, для описания связей между переменными величинами применяют математические понятие функции f , которая ставит в соответствие каждому определенному значению независимой переменной x определенное значение зависимой переменной y , т.е. . Такого рода однозначные зависимости между переменными величинамиx и y называют функциональными . Однако такого рода связи в природных объектах встречаются далеко не всегда. Поэтому зависимость между биологическими, а также и экологическими признаками имеет не функциональный, а статистический характер, когда в массе однородных индивидов определенному значению одного признака, рассматриваемого в качестве аргумента, соответствует не одно и то же числовое значение, а целая гамма распределяющихся в вариационный ряд числовых значений другого признака, рассматриваемого в качестве зависимой переменной, или функции. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией..

Функциональные связи легко обнаружить и измерить на единичных и групповых объектах, однако этого нельзя проделать с корреляционными связями, которые можно изучать только на групповых объектах методами математической статистики. Корреляционная связь между признаками бывает линейной и нелинейной, положительной и отрицательной. Задача корреляционного анализа сводится к установлению направления и формы связи между варьирующими признаками, измерению ее тесноты и, наконец, к проверке достоверности выборочных показателей корреляции.

Зависимость между переменными X и Y можно выразить аналитически (с помощью формул и уравнений) и графически (как геометрическое место точек в системе прямоугольных координат). График корреляционной зависимости строят по уравнению функции или, которая называетсярегрессией . Здесь и– средние арифметические, найденные при условии, чтоX или Y примут некоторые значения x или y . Эти средние называются условными .

11.1. Параметрические показатели связи

Коэффициент корреляции . Сопряженность между переменными величинами x и y можно установить, сопоставляя числовые значения одной из них с соответствующими значениями другой. Если при увеличении одной переменной увеличивается другая, это указывает на положительную связь между этими величинами, и наоборот, когда увеличение одной переменной сопровождается уменьшением значения другой, это указывает на отрицательную связь .

Для характеристики связи, ее направления и степени сопряженности переменных применяют следующие показатели:

    линейной зависимость – коэффициент корреляции ;

    нелинейный – корреляционной отношение .

Для определения эмпирического коэффициента корреляции используют следующую формулу:

. (1)

Здесь s x и s y – средние квадратические отклонения.

Коэффициент корреляции можно вычислить, не прибегая к расчету средних квадратических отклонений, что упрощает вычислительную работу, по следующей аналогичной формуле:

. (2)

Коэффициент корреляции – безразмерное число, лежащее в пределах от –1 до +1. При независимом варьировании признаков, когда связь между ними полностью отсутствует, . Чем сильнее сопряженность между признаками, тем выше значение коэффициента корреляции. Следовательно, приэтот показатель характеризует не только наличие, но и степень сопряженности между признаками. При положительной или прямой связи, когда большим значениям одного признака соответствуют большие же значения другого, коэффициент корреляции имеет положительный знак и находится в пределах от 0 до +1, при отрицательной или обратной связи, когда большим значениям одного признака соответствуют меньшие значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1.

Коэффициент корреляции нашел широкое применение в практике, но он не является универсальным показателем корреляционных связей, так как способен характеризовать только линейные связи, т.е. выражаемые уравнением линейной регрессии (см. тему 12). При наличии нелинейной зависимости между варьирующими признаками применяют другие показатели связи, рассмотренных ниже.

Вычисление коэффициента корреляции . Это вычисление производят разными способами и по-разному в зависимости от числа наблюдений (объема выборки). Рассмотрим отдельно специфику вычисления коэффициента корреляции при наличии малочисленных выборок и выборок большого объема.

Малые выборки . При наличии малочисленных выборок коэффициент корреляции вычисляют непосредственно по значениям сопряженных признаков, без предварительной группировки выборочных данных в вариационные ряды. Для этого служат приведенные выше формулы (1) и (2). Более удобными, особенно при наличии многозначных и дробных чисел, которыми выражаются отклонения вариант х i и y i от средних и, служат следующие рабочие формулы:

где ;

;

Здесь x i и y i – парные варианты сопряженных признаков x и y ; и –средние арифметические;– разность между парными вариантами сопряженных признаковx и y ; n – общее число парных наблюдений, или объем выборочной совокупности.

Эмпирический коэффициент корреляции, как и любой другой выборочный показатель, служит оценкой своего генерального параметра ρ и как величина случайная сопровождается ошибкой:

Отношение выборочного коэффициента корреляции к своей ошибке служит критерием для проверки нулевой гипотезы – предположения о том, что в генеральной совокупности этот параметр равен нулю, т.е. . Нулевую гипотезу отвергают на принятом уровне значимостиα , если

Значения критических точек t st для разных уровней значимости α и чисел степеней свободы приведены в табл.1 Приложений.

Установлено, что при обработке малочисленных выборок (особенно когда n < 30 ) расчет коэффициента корреляции по формулам (1) – (3) дает несколько заниженные оценки генерального параметра ρ , т.е. необходимо внести следующую поправку:

z-преобразование Фишера . Правильное применение коэффициента корреляции предполагает нормальное распределение двумерной совокупности сопряженных значений случайных величин x и y . Из математической статистики известно, что при наличии значительной корреляции между переменными величинами, т.е. когда R xy > 0,5 выборочное распределение коэффициента корреляции для большего числа малых выборок, взятых из нормально распределяющейся генеральной совокупности, значительно отклоняются от нормальной кривой.

Учитывая это обстоятельство, Р. Фишер нашел более точный способ оценки генерального параметра по значению выборочного коэффициента корреляции. Этот способ сводится к замене R xy преобразованной величиной z, которая связана с эмпирическим коэффициентом корреляции, следующим образом:

Распределение величины z является почти неизменным по форме, так как мало зависит от объема выборки и от значения коэффициента корреляции в генеральной совокупности, и приближается к нормальному распределению.

Критерием достоверности показателя z является следующее отношение:

Нулевая гипотеза отвергается на принятом уровне значимости α и числе степеней свободы . Значения критических точекt st приведены в табл.1 Приложений.

Применение z-преобразования позволяет с большей уверенностью оценивать статистическую значимость выборочного коэффициента корреляции, а также и разность между эмпирическими коэффициентами , когда в этом возникает необходимость.

Минимальный объем выборки для точной оценки коэффициента корреляции. Можно рассчитать объем выборки для заданного значения коэффициента корреляции, который был бы достаточен для опровержения нулевой гипотезы (если корреляция между признаками Y и X действительно существует). Для этого служит следующая формула:

где n – искомый объем выборки; t – величина, заданная по принятому уровню значимости (лучше для α = 1%); z – преобразованный эмпирический коэффициент корреляции.

Большие выборки . При наличии многочисленных исходных данных их приходится группировать в вариационные ряды и, построив корреляционную решетку, разность по ее клеткам (ячейкам) общие частоты сопряженных рядов. Корреляционная решетка образуется пересечением строк и столбцов, число которых равно числу групп или классов коррелируемых рядов. Классы располагаются в верхней строке и в первой (слева) столбце корреляционной таблицы, а общие частоты, обозначаемые символом f xy , – в клетках корреляционной решетки, составляющей основную часть корреляционной таблицы.

Классы, помещенные в верхней строке таблицы, обычно располагаются слева направо в возрастающем порядке, а в первом столбце таблицы – сверху вниз в убывающем порядке. При таком расположении классов вариационных рядов их общие частоты (при наличии положительной связи между признаками Y и X ) будут распределяться по клеткам решетки в виде эллипса по диагонали от нижнего левого угла к верхнему правому углу решетки или (при наличии отрицательной связи между признаками) в направлении от верхнего левого угла к нижнему правому углу решетки. Если же частоты f xy распределяются по клеткам корреляционной решетки более или менее равномерно, не образуя фигуры эллипса, это будет указывать на отсутствие корреляции между признаками.

Распределение частот f xy по клеткам корреляционной решетки дает лишь общее представление о наличии или отсутствии связи между признаками. Судить о тесноте или менее точно лишь по значению и знаку коэффициента корреляции . При вычислении коэффициента корреляции с предварительной группировки выборочных данных в интервальные вариационные ряды не следует брать слишком широкие классовые интервалы. Грубая группировка гораздо сильнее сказывается на значении коэффициента корреляции, чем это имеет место при вычислении средних величин и показателей вариации.

Напомним, что величина классового интервала определяется по формуле

где x max , x min – максимальная и минимальная варианты совокупности; К – число классов, на которые следует разбить вариацию признака. Опыт показал, что в области корреляционного анализа величину К можно поставить в зависимость от объема выборки примерно следующим образом (табл.1).

Таблица 1

Объем выборки

Значение К

50 ≥ n > 30

100 ≥ n > 50

200 ≥ n > 100

300 ≥ n > 200

Как и другие статистические характеристики, вычисляемые с предварительной группировкой исходных данных в вариационные ряды, коэффициент корреляции определяют разными способами, дающими совершенно идентичные результаты.

Способ произведений . Коэффициент корреляции можно вычислить используя основные формулы (1) или (2), внеся в них поправку на повторяемость вариант в димерной совокупности. При этом, упрощая символику, отклонения вариант от их средних обозначим через а , т.е. и. Тогда формула (2) с учетом повторяемости отклонений примет следующее выражение:

Достоверность этого показателя оценивается с помощью критерия Стьюдента, который представляет отношение выборочного коэффициента корреляции к своей ошибке, определяемой по формуле

Отсюда и если эта величина превышает стандартное значение критерия Стьюдентаt st для степени свободы и уровне значимостиα (см. Таблицу 2 Приложений), то нулевую гипотезу отвергают.

Способ условных средних . При вычислении коэффициента корреляции отклонения вариант (“классов”) можно находить не только от средних арифметических и, но и от условных средних А х и A y . При этом способе в числитель формулы (2) вносят поправку и формула приобретает следующий вид:

где f xy – частоты классов одного и другого рядов распределения; и, т.е. отклонения классов от условных средних, отнесенные к величине классовых интерваловλ ; n – общее число парных наблюдений, или объем выборки; и– условные моменты первого порядка, гдеf x – частоты ряда Х , а f y – частоты ряда Y ; s x и s y – средние квадратические отклонения рядов X и Y , вычисляемые по формуле .

Способ условных средних имеет преимущество перед способом произведений, так как позволяет избегать операции с дробными числами и придавать один и тот же (положительный) знак отклонениям a x и a y , что упрощает технику вычислительной работы, особенно при наличии многозначных чисел.

Оценка разности между коэффициентами корреляции . При сравнении коэффициентов корреляции двух независимых выборок нулевая гипотеза сводится к предположению о том, что в генеральной совокупности разница между этими показателями равна нулю. Иными словами, следует исходить из предположения, что разница, наблюдаемая между сравниваемыми эмпирическими коэффициентами корреляции, возникла случайно.

Для проверки нулевой гипотезы служит t-критерий Стьюдента, т.е. отношение разности между эмпирическими коэффициентами корреляции R 1 и R 2 к своей статистической ошибке, определяемой по формуле:

где s R1 и s R2 – ошибки сравниваемых коэффициентов корреляции.

Нулевая гипотеза опровергается при условии, что для принятого уровне значимостиα и числе степеней свободы .

Известно, что более точную оценку достоверности коэффициента корреляции получают при переводе R xy в число z . Не является исключением и оценка разности между выборочными коэффициентами корреляции R 1 и R 2 , особенно в тех случаях, когда последние вычислены на выборках сравнительно небольшого объема (n < 100 ) и по своему абсолютному значению значительно превышают 0,50.

Разность оценивают с помощью t-критерия Стьюдента, который строят по отношению этой разности к своей ошибке, вычисляемой по формуле

Нулевую гипотезу отвергают, если дляи принятого уровня значимостиα.

Корреляционное отношение . Для измерения нелинейной зависимости между переменными x и y используют показатель, который называют корреляционным отношением , который описывает связь двусторонне. Конструкция корреляционного отношения предполагает сопоставление двух видов вариации: изменчивости отдельных наблюдений по отношению к частным средним и вариации самих частных средних по сравнению с общей средней величиной. Чем меньшую часть составит первый компонент по отношению ко второму, тем теснота связи окажется большей. В пределе, когда никакой вариации отдельных значений признака возле частных средних не будет наблюдаться, теснота связи окажется предельно большой. Аналогичным образом, при отсутствии изменчивости частных средних теснота связи окажется минимальной. Так как это соотношение вариации может быть рассмотрено для каждого из двух признаков, получается два показателя тесноты связи – h yx и h xy . Корреляционное отношение является величиной относительной и может принимать значения от 0 до 1. При этом коэффициенты корреляционного отношения обычно не равны друг другу, т.е. . Равенство между этими показателями осуществимо только при строго линейной зависимости между признаками. Корреляционное отношение является универсальным показателем: оно позволяет характеризировать любую форму корреляционной связи – и линейную, и нелинейную.

Коэффициенты корреляционного отношения h yx и h xy определяют рассмотренными выше способами, т.е. способом произведений и способом условных средних.

Корреляционный анализ является одним из наиболее широко используемых статистических методов, в частности и в рамках политической науки. При своей относительной простоте он может быть весьма полезен как для тестирования имеющихся гипотез, так и в поисковом исследовании, когда предположения о связях и взаимозависимостях только формируются. Умение работать с данной статистической техникой важно и в силу того, что она используется как составная часть более сложных, комплексных методов, в том числе факторного анализа, некоторых версий кластер-анализа и др.

Целью корреляционного анализа является измерение стати -

стической взаимозависимости между двумя или более переменными. В случае, если исследуется связь двух переменных, корреляционный анализ будет парным; если число переменных более двух - множественным.

Следует подчеркнуть, что переменные в корреляционном анализе как бы «равноправны» - они не делятся на зависимые и независимые (объясняемые и объясняющие). Мы рассматриваем именно взаимозависимость (взаимосвязь) переменных, а не влияние одной из них на другую.

Понятие «корреляционный анализ» фактически объединяет несколько методов анализа статистической связи. В фокусе нашего внимания будет находиться наиболее распространенный из них - метод Пирсона (Реагзоп) . Его применение ограничено следующими условиями:

Переменные должны быть измерены, как минимум, на интервальном уровне;

Связь между переменными должна носить линейный характер, т. е. фиксироваться прямой линией. При наличии нелинейной связи корреляционный анализ Пирсона, скорее всего, не даст ее адекватного отображения;

Анализируемые переменные должны быть распределены нормально (или, во всяком случае, приближаться к нормальному распределению).

Корреляционный анализ фиксирует две характеристики статистической взаимосвязи между переменными:

Направленность связи. Как уже говорилось, по направленности связь бывает прямая (положительная) и обратная (отрицательная);

Интенсивность (плотность, теснота) связи. Эта характеристика определяет наши возможности по предсказанию значений одной переменной на основании значений другой.

Чтобы более наглядно представить себе особенности корреляционного анализа, обратимся к примеру из сферы исследования электоральных процессов. Предположим, мы проводим сравнительный анализ электората двух политических партий либеральной ориентации - Союза правых сил и «Яблока». Наша задача - понять, существует ли общность электората СПС и «Яблока» в территориальном разрезе и насколько она значима. Для этого мы можем, например, взять данные электоральной статистики, характеризующие уровень поддержки этих партий, в разрезе данных избирательных комиссий субъектов Федерации. Проще говоря, мы смотрим на проценты, полученные СПС и «Яблоком» по регионам России. Ниже приводятся данные по выборам депутатов Государственной думы 1999 г. (количество регионов 88, поскольку выборы в Чеченской Республике не проводились) .

Переменные (%)

«Яблоко»

Республика Адыгея

Республика Алтай

Республика Башкортостан

Республика Бурятия

Республика Дагестан

Республика Ингушетия

Кабардино-Балкарская Республика

Республика Калмыкия

Карачаево-Черкесская Республика

Республика Карелия

Республика Коми

Республика Марий Эл

И т. д. (всего 88 случаев)

Таким образом, у нас есть две переменные - «поддержка СПС в 1999 г.» и «поддержка "Яблока" в 1999 г.», простейшим образом операционализированные через процент голосов, поданных за эти партии, от числа избирателей, принявших участие в голосовании на федеральных парламентских выборах 1999 г. В качестве случаев выступают соответствующие данные, обобщенные на уровне регионов РФ.

Далее, в нашем распоряжении есть методический прием, который является одним из основных в статистике, - геометрическое представление. Геометрическим представлением называют представление случая как точки в условном пространстве, формируемом «осями» - переменными. В нашем примере мы можем представить каждый регион как точку в двухмерном пространстве голосований за правые партии. Ось X формирует признак «поддержка СПС», ось У- «поддержка "Яблока"» (или наоборот; для корреляционного анализа это неважно в силу неразличения зависимых и независимых переменных). «Координатами» региона будут: по оси X - значение переменной «поддержка СПС» (процент, набранный в регионе данной партией); по оси У- значение переменной «поддержка "Яблока"». Так, Республика Адыгея будет иметь координаты (3,92; 4,63), Республика Алтай - (3,38; 5,4) и т. д. Осуществив геометрическое представление всех случаев, мы получаем диаграмму рассеяния, или корреляционное поле.

Даже сугубо визуальный анализ диаграммы рассеяния наводит на мысль, что совокупность точек можно расположить вдоль некоторой условной прямой, называемой линией регрессии. Математически линия регрессии строится методом наименьших квадратов (высчитывается такое положение линии, при котором сумма квадратов расстояний от наблюдаемых точек до прямой является минимальной).

Интенсивность связи будет зависеть от того, насколько тесно точки (случаи) расположены вдоль линии регрессии. В коэффициенте корреляции (обозначается г), который и является числовым результатом корреляционного анализа, плотность колеблется от 0 до 1. При этом чем ближе значение коэффициента к 1, тем плотнее связь; чем ближе значение к 0, тем связь слабее. Так, при г = 1 связь приобретает характер функциональной - все точки «ложатся» на одну прямую. При г = 0, фиксирующем полное отсутствие связи, построение линии регрессии становится невозможным. В нашем примере г = 0,62, что свидетельствует о наличии значимой статистической связи (подробнее об интерпретации коэффициента корреляции см. ниже).

Тип связи определяется наклоном линии регрессии. В коэффициенте корреляции существует всего два значения типа связи: обратная (знак «-») и прямая (отсутствие знака, так как знак «+» традиционно не записывается). В нашем примере связь прямая. Соответственно, итоговый результат анализа 0,62.

Сегодня коэффициент корреляции Пирсона можно легко подсчитать с помощью всех компьютерных пакетов программ статистического анализа (8Р88, 81аИ8Иса, N088 и др.) и даже в широко распространенной программе Ехсе1 (надстройка «анализ данных»). Настоятельно рекомендуем пользоваться профессиональными пакетами, так как они позволяют визуально оценить корреляционное поле.

Почему важна визуальная оценка геометрического представления данных? Во-первых, мы должны убедиться, что связь линейна по форме, а здесь самый простой и эффективный метод - именно зрительная оценка. Напомним, что в случае ярко выраженной нелинейности связи вычисление коэффициента корреляции окажется бесполезным. Во-вторых, визуальная оценка позволяет найти в данных выбросы, т. е. нетипичные, резко выделяющиеся случаи.

Вернемся к нашему примеру с двумя партиями. Внимательно глядя на диаграмму рассеяния, мы замечаем по меньшей мере один нетипичный случай, лежащий явно в стороне от «общей магистрали», тенденции связи переменных. Это точка, представляющая данные по Самарской области. Хотя и в меньшей степени, но тоже нетипично положение Томской, Нижегородской областей и Санкт-Петербурга.

Можно скорректировать данные анализа, удалив сильно отклоняющиеся наблюдения, т. е. произведя «чистку выбросов». В силу специфики вычисления линии регрессии, связанной с подсчетом суммы квадратов расстояний, даже единичный выброс может существенно исказить общую картину.

на массиве данных, взятых в территориальном разрезе. Логично предположить, что в основе этой связи лежит некий фактор или комплекс факторов, который мы пока непосредственно не учитывали. Исследуя данные электоральной статистики разного уровня, нетрудно заметить, что обе партии демонстрируют лучшие результаты в городах и худшие - в сельских районах. Мы можем выдвинуть гипотезу, что одним из факторов, опосредующих связь между переменными, является уровень урбанизации территорий. Этот признак проще всего опера-ционализировать через переменную «доля сельского населения» или «доля городского населения» . Такая статистика существует по каждому субъекту Федерации.

Теперь в наших исходных данных появляется третья переменная - пусть это будет «доля сельского населения» .

Удалив только один из 88 случаев - Самарскую область, - мы получим значение коэффициента корреляции, отличное от полученного ранее: 0,73 по сравнению с 0,62. Плотность связи усилилась более чем на 0,1 - это весьма и весьма существенно. Избавившись отточек, соответствующих Санкт-Петербургу, Томской и Нижегородской областям, получим еще более высокую плотность: 0,77.

Впрочем, чисткой выбросов не следует увлекаться: сокращая количество случаев, мы понижаем общий уровень статистического доверия к полученным результатам. К сожалению, общепринятых критериев определения выбросов не существует, и здесь многое зависит от добросовестности исследователя. Лучший способ - содержательно понять, с чем связано наличие «выброса». Так, в нашем примере нетипичное положение Самарской области в признаковом пространстве связано с тем, что в 1999 г. одним из активных лидеров правых был глава региона К. Титов. Соответственно, высокий результат СПС в регионе был обусловлен не только поддержкой партии как таковой, но и поддержкой губернатора.

Возвратимся к нашему исследованию. Мы выяснили, что голосование за СПС и «Яблоко» довольно плотно коррелирует между собой

Чисто технически мы можем вычислять каждый парный коэффициент корреляции отдельно, но удобнее сразу получить матрицу интеркорреляций (матрицу парных корреляций). Матрица обладает диагональной симметрией. В нашем случае она будет выглядеть следующим образом:

Мы получили статистически значимые коэффициенты корреляции, подтверждающие выдвинутую нами гипотезу. Так, доля городского населения оказалась отрицательно связанной как с поддержкой СПС (г= -0,61), так и с поддержкой «Яблока» (г= -0,55). Можно заметить, что переменная «поддержка СПС» более чувствительна к фактору урбанизации по сравнению с переменной «поддержка "Яблока"».

«Яблоко»

В этом примере мы уже начинаем мыслить в категориях влияния одной переменной на другую. Строго говоря, и это отмечено выше, корреляционный анализ не различает зависимых и независимых переменных, фиксируя лишь их взаимную статистическую связь. В то же время содержательно мы понимаем, что именно принадлежность

Следует отметить, что после чистки выбросов (см. диаграммы рассеяния) связь была бы еще плотнее. Так, после удаления двух выбросов (Самарская область и Усть-Ордынский Бурятский АО) плотность коэффициента для СПС увеличивается до -0,65.

избирателей к городскому или сельскому населению влияет на их электоральный выбор, а никак не наоборот.

Интерпретация интенсивности связи

Мы подошли к проблеме интерпретации интенсивности связи на основе значения коэффициента корреляции Пирсона. Определенного жесткого правила здесь не существует; скорее речь идет о совокупном опыте, накопленном в процессе статистических исследований. Традиционной можно считать следующую схему интерпретации данного коэффициента:

Необходимо отметить, что подобный вариант интерпретации плотности коэффициента корреляции применим в науках, в гораздо большей степени опирающихся на количественные данные, нежели наука политическая (например, в экономике). В эмпирических исследованиях политики довольно редко можно обнаружить г > 0,7; коэффициент же со значением 0,9 - случай просто уникальный. Это связано прежде всего с особенностями мотивации политического поведения - сложной, многофакторной, нередко иррациональной. Ясно, что такое сложное явление, как голосование за определенную политическую партию , не может целиком подчиняться одному или даже двум факторам. Поэтому применительно к политическим исследованиям предлагаем несколько смягченную схему интерпретации:

0,4 > г > 0,3 - слабая корреляция;

0,6 > г > 0,4 - средняя корреляция;

Г > 0,7 - сильная корреляция.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: г= 0,83; 1995-1996: г = 0,76;

1999-2000: г = 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Использование корреляционного анализа для выявления динамики связи переменных во времени

Корреляционный анализ можно использовать не только для обнаружения связи между переменными, но и для оценки изменения этой связи во времени. Так, при изучении проблемы электоральной активности в регионах России необходимо было убедиться в том, что уровень активности избирателей является некой стабильной характеристикой электоральной культуры российских территорий. Имеются в виду, разумеется, не абсолютные показатели, которые существенно колеблются от выборов к выборам. Речь идет об устойчивости различий в уровне активности избирателей различных регионов России.

Устойчивость пропорционального распределения явки по субъектам Федерации достаточно просто проверяется методом корреляционного анализа. Приводимая ниже матрица парных корреляций электоральной активности на федеральных выборах 1991-2004 гг. довольно четко демонстрирует существующую тенденцию. Статистическая связь наиболее сильна внутри одного электорального цикла (1991-1993; 1995-1996; 1999-2000; 2003-2004), между двумя близкими по времени циклами она несколько слабеет, а по мере удаления электоральных циклов стремится к затуханию.

Отметим, что внутри каждого электорального цикла плотность корреляции превышает 0,7 (1991-1993: /-= 0,83; 1995-1996: г= 0,76;

1999-2000: г= 0,74; 2003-2004: г= 0,73). На максимальной временной дистанции - между президентскими и парламентскими выборами 1991 - 1993 и 2003-2004 гг. - связи нет никакой, коэффициенты не превышают 0,1. В то же время затухание связи во времени происходит медленно. Так, обращает на себя внимание наличие связи, хоть и неплотной, между уровнем электоральной активности на парламентских выборах 1995 и 2003 гг. (г= 0,36). Тот факт, что определенная преемственность обнаруживается на протяжении восьми лет, в течение которых происходит серьезнейшее «переформатирование» политического режима и системы федеративных отношений, свидетельствует о высокой устойчивости распределения уровня явки по российским регионам. Таким образом, мы имеем основания считать уровень активности/абсентеизма одной из составляющих электоральной культуры территорий.

Другие коэффициенты корреляции

Как было отмечено, коэффициент корреляции Пирсона является наиболее распространенным критерием связи интервальных и нормально распределенных переменных. Но что делать, если мы имеем переменные, существенно отклоняющиеся от нормального распределения? Или переменные не интервальные, но при этом являются метрическими (порядковые переменные с большим числом категорий)?

В этих ситуациях рекомендуется вычислять коэффициенты корреляции рангов, наиболее известным из которых является коэффициент Спирмана. Ранговая корреляция оперирует логикой порядкового уровня: принимаются во внимание не абсолютные значения, а отношения порядка (возрастания и убывания). В какой-то мере ранговую корреляцию можно считать усложненной версией расчета показателя гамма (у), который мы рассматривали в качестве стандартной меры связи порядковых переменных.

Коэффициент корреляции Спирмана колеблется в том же интервале, что и коэффициент Пирсона - от 0 до ± 1. Принципы интерпретации значений коэффициента также идентичны. Дополнительно стоит отметить, что ранговая корреляция не чувствительна к выбросам, так как не чувствительна к абсолютным значениям вообще.