Проектирование и строительство домов

Проектирование и строительство домов

» » Большая энциклопедия нефти и газа. Особые физические свойства кристаллов

Большая энциклопедия нефти и газа. Особые физические свойства кристаллов

Лицей современных технологий управления

Реферат по физике

Кристаллы и их свойства

Выполнил:

Проверил:

Введение

Кристаллические тела являются одой из разновидностей минералов.

Кристаллическими называют твердые тела, физические свойства которых не одинаковы в различных направлениях, но совпадают в параллельных направлениях.

Семейство кристаллических тел состоит из двух групп - монокристаллов и поликристаллов. Первые иногда обладают геометрически правильной внешней формой, а вторые, подобно аморфным телам, не имеют присущей данному веществу определенной формы. Но в отличие от аморфных тел структура поликристаллов неоднородна, зерниста. Они представляют собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Поликристаллическую структуру чугуна, например, можно обнаружить, если рассмотреть с помощью лупы образец на изломе.

По размерам кристаллы бывают различными. Многие из них можно увидеть только в микроскоп. Но встречаются гигантские кристаллы массой в несколько тонн.

Строение кристаллов

Разнообразие кристаллов по форме очень велико. Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством - какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковы. Кристаллы каменной соли, например, могут иметь форму куба, параллелепипеда, призмы или тела более сложной формы, но всегда их грани пересекаются под прямыми углами. Грани кварца имеют форму неправильных шестиугольников, но углы между гранями всегда одни и те же - 120°.

Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах - кристаллографии.

Измерение углов между гранями кристаллов имеет очень большое практическое значение, так как по результатам этих измерений во многих случаях может быть достоверно определена природа минерала. Простейшим прибором для измерения углов кристаллов является прикладной гониометр. Применение прикладного гониометра возможно только для исследования крупных кристаллов, невелика и точность измерений, выполненных с его помощью. Различить, например, кристаллы кальцита и селитры, сход­ные по форме и имеющие углы между соответственными гранями, равные 101° 55" первого и 102°41,5" у второго, с помощью прикладного гониометра очень трудно. Поэтому в лабораторных условиях измерений углов между гранями кристалла обычно выполняют с помощью более сложных и точных приборов.

Кристаллы правильной геометрической формы встречаются в природе редко. Совместное действие таких неблагоприятных факторов, как колебания температуры, тесное окружение соседними твердыми телами, не позволяют растущему кристаллу приобрести характерную для него форму. Кроме того, значительная часть кристаллов, имевших в далеком прошлом совершенную огранку, успела утратить ее под действием воды, ветра, трения о другие твердые тела. Так, многие округлые прозрачные зерна, которые можно найти в прибрежном песке, являются кристаллами кварца, лишившимися граней в результате длительного трения друг о друга.

Существует несколько способов, позволяющих узнать, является ли твердое тело кристаллом. Самый простой из них, но очень малопригодный для использования, был открыт в результате случайного наблюдения в конце XVIII в. Французский ученый Ренне Гаюи нечаянно уронил один из кристаллов своей коллекции. Рассмотрев осколки кристалла, он заметил, что многие из них представляют собой уменьшенные копии исходного образца.

Замечательное свойство многих кристаллов давать при дроблении осколки, подобные по форме исходному кристаллу, позволило Гаюи высказать гипотезу, что все кристаллы состоят из плотно уложенных рядами маленьких, невидимых в микроскоп, частиц, имеющих присущую данному веществу правильную геометрическую форму. Многообразие геометрических форм Гаюи объяснил не только различной формой «кирпичиков», из которых они состоят, но и различными способами их укладки.

Гипотеза Гаюи правильно отразила сущность явления - упорядоченное и плотное расположение структурных элементов кристаллов, но она не ответила на целый ряд важнейших вопросов. Существует ли предел сохранению формы? Если существует, то что представляет собой самый маленький «кирпичик»? Имеют ли атомы и молекулы вещества форму многогранников?

Еще в XVIII в. английский ученый Роберт Гук и голландский ученый Христиан Гюйгенс обратили внимание на возможность построения правильных многогранников из плотно укладываемых шаров. Они предположили, что кристаллы построены из шарообразных частиц - атомов или молекул. Внешние формы кристаллов согласно этой гипотезе являются следствием особенностей плотной упаковки атомов или молекул. Независимо от них к такому же выводу пришел в 1748 г. великий русский ученый М. В. Ломоносов.

При плотнейшей укладке шаров в один плоский слой каждый шар оказывается окруженным шестью другими шарами, центры которых образуют правильный шестиугольник. Если укладку второго слоя вести по лункам между шарами первого слоя, то второй слой окажется таким же, как и первый, только смещенным относительно него в пространстве.

Укладка третьего слоя шаров может быть осуществлена двумя способами (рис.1). В первом способе шары третьего слоя укладываются в лунки, находящиеся точно над шарами первого слоя, и третий слой оказывается точной копией первого. При последующем повторении укладки слоев этим способом получается структура, называемая гексагональной плотноупакованной структурой. Во втором способе шары третьего слоя укладываются в лунки, не находящиеся точно над шарами первого слоя. При этом способе упаковки получается структура, называемая кубической плотноупакованной структурой. Обе упаковки дают степень заполнения объема 74%. Никакой другой способ расположения шаров в пространстве при отсутствии их деформации большей степени заполнения объема не дает.

При укладке шаров ряд за рядом способом гексагональной плотной упаковки можно получить правильную шестигранную призму, второй способ упаковки ведет к возможности построения куба из шаров.

Если при построении кристаллов из атомов или молекул действует принцип плотной упаковки, то, казалось бы, в природе должны встречаться кристаллы только в виде шестигранных призм и кубов. Кристаллы такой формы действительно очень распространены. Гексагональный плотной упаковке атомов соответствует, например, форма кристаллов цинка, магния, кадмия. Кубической плотной упаковке соответствует форма кристаллов меди, алюминия, серебра, золота и ряда других металлов.

Но этими двумя формами многообразие мира кристаллов вовсе не ограничивается.

Существование форм кристаллов, не соответствующих принципу плотнейшей упаковки равновеликих шаров, может иметь разные причины.

Во-первых, кристалл может быть построен с соблюдением принципа плотной упаковки, но из атомов разных размеров или из молекул, имеющих форму, сильно отличающуюся от шарообразной (рис.2). Атомы кислорода и водорода имеют шарообразную форму. При соединении одного атома кислорода и двух атомов водорода происходит взаимное проникновение их электронных оболочек. Поэтому молекула воды имеет форму, значительно отличающуюся от шарообразной. При затвердевании воды плотная упаковка ее молекул не может осуществляться тем же способом, что и упаковка равновеликих шаров.

Во - вторых, отличие упаковки атомов или молекул от плотнейшей может быть объяснено существованием более сильных связей между ними по определенным направлениям. В случае атомных кристаллов направленность связей определяется структурой внешних электронных оболочек атомов, в молекулярных кристаллах - строением молекул.

Разобраться в устройстве кристаллов, пользуясь только объемными моделями их строения, довольно трудно. В связи с этим часто применяется способ изображения строения кристаллов с помощью пространственной кристаллической решетки. Она представляет собой пространственную сетку, узлы которой совпадают с положением центров атомов (молекул) в кристалле. Такие модели просматриваются насквозь, но по ним нельзя ничего узнать о форме и размерах частиц, слагающих кристаллы.

В основе кристаллической решетки лежит элементарная ячейка - фигура наименьшего размера, последовательным переносом которой можно построить весь кристалл. Для однозначной характеристики ячейки нужно задать размеры ее ребер а, в и с и величину углов a, b и g между ними. Длину одного из ребер называют постоянной кристаллической решетки, а всю совокупность шести величин, задающих ячейку, - параметрами ячейки.

На рисунке 3 показано, как можно застроить все пространство путем сложения элементарных ячеек.

Важно обратить внимание на то, что большинство атомов, а для многих типов кристаллической решетки и каждый атом принадлежит не одной элементарной ячейке, а входит одновременно в состав нескольких соседних элементарных ячеек. Рассмотрим, к примеру, элементарную ячейку кристалла каменной соли.

За элементарную ячейку кристалла каменной соли, из которой, переносом в пространстве можно построить весь кристалл, должна быть принята часть кристалла, представленная на рисунке. При этом нужно учесть, что от ионов, находящихся в вершинах ячейки, ей принадлежит лишь одна восьмая каждого из них; от ионов, лежащих на ребрах ячейки, ей принадлежит по одной четвертой каждого; от ионов, лежащих на гранях, на долю каждой из двух соседних элементарных ячеек приходится по половине иона.

Подсчитаем число ионов натрия и число ионов хлора, входящих в состав одной элементарной ячейки каменной соли. Ячейке целиком принадлежит один ион хлора, расположенный в центре ячейки, и по одной четверти каждого из 12 ионов, расположенных на ребрах ячейки. Всего ионов хлора в одной ячейке 1+12*1/4=4. Ионов натрия в элементарной ячейке-шесть половинок на гра­нях и восемь восьмушек в вершинах, всего 6*1/2+8*1/8=4.

Современное человечество только в XVII веке заново открыло для себя кристаллы. Датой рождения кристаллографии - науки, занимающейся изучением кристаллов, принято считать 1669 г.
Хотя научная кристаллография зародилась в XVII веке, теоретические основы о строении кристаллов и способах их исследования были заложены лишь в XIX веке. В XX веке эти открытия нашли практическую реализацию в самых разных областях человеческой жизни. Кристаллы стали широко применяться в самых разных областях науки и техники. Будущее - тоже за ними.
Кристаллы окружают нас со всех сторон. Они - основа физического мира. Из них состоят почти все минералы, в том числе базальт, гранит, известняк и мрамор. Из них состоят все металлы и большинство неметаллов: каучук, кости, волосы, целлюлоза и многое другое.
Мы живем в мире кристаллов. Дома, пароходы, автобусы, самолеты, ракеты, ножи и вилки... - все состоит из них.
Даже в пищу потребляем кристаллические вещества: соль, сахар, не говоря уже о лекарствах в таблетках и порошках, которые мы принимаем во время болезни.
Нет на Земле такого места, где не было бы кристаллов. Да и во Вселенной они широко распространены, так как служат ее материальной основой.
В 1669 году датский врач Н. Стенон сделал важное открытие, он установил, что в кристаллах, образованных одним и тем же веществом, углы между соседними гранями всегда одинаковы, независимо от формы и размеров кристалла.
Это значит, что каждый кристалл имеет присущий только ему угол между гранями.
Это открытие вошло в кристаллографию как закон постоянства углов. Таким образом, если известен угол между гранями, то можно определить вещество кристалла, не прибегая к химическому или физическому анализу. Достаточно только сравнить их с углами известных кристаллов.
Кроме того, тот же Стенон впервые предложил замечательную версию, что кристаллы растут не изнутри, как это наблюдается у растений, а снаружи, путем наложения на внешние плоскости новых частиц.
Кристаллы состоят из атомов, ионов и молекул. Эти частицы располагаются в строго определенном порядке, образуя пространственную решетку. Атомы и ионы удерживаются в них силами притяжения и отталкивания. Они не стоят на месте, а непрерывно колеблются.
Каждый кристалл имеет свою характерную форму, зависящую не только от среды, в которой он вырос, но и от строения пространственной решетки. Форма решетки определяет и свойства самого кристалла. В этом отношении наиболее показателен пример алмаза и графита, пространственные решетки, которых образованы атомами одного и того же элемента - углерода.
Графит - минерал черного цвета, мягкий и пластичный, проводит электрический ток и устойчив к огню. И все потому, что решетка его состоит как бы из слоев, связь между которыми не такая прочная, как между отдельными атомами внутри этого слоя. Такие слои легко сдвинуть один относительно другого при легком нажиме, что мы и наблюдаем, когда пишем карандашом. Он, как мы уже догадались, и является графитом.
А вот алмаз - полная противоположность графиту. Он прозрачен, по прочности превосходит другие кристаллы, но не проводит ток и легко сгорает в струе кислорода. Он почти вдвое тяжелее графита. "Виновата" во всем этом его пространственная решетка. Она трехмерна, а каждый атом в ней крепко связан с четырьмя другими.
Кристаллы бывают твердыми телами и могут быть жидкими, если их молекулы обладают способностью ориентироваться в одном направлении "все вдруг" или группами-слоями или другими способами.
Наконец, "кристаллы" могут быть чисто энергетическими, невидимыми, но наука кристаллография такими "призраками" пока не занимается.
В кристалле грани пересекаются по ребрам, а ребра пересекаются в вершинах. Грани, ребра и вершины - обязательные элементы гранения.
Основные особенности кристаллов - однородность и плоскогранность. Таким образом, если кристаллы имеют плоские грани, то значит, состав их однороден. И наоборот: если вещество кристалла однородно, то оно имеет плоские грани.
Кристаллы могут издавать звуки, например, поющие пески. Это явление привлекает внимание путешественника, оказавшегося среди песчаных барханов пустыни Каракум или других пустынь.
Вдруг неведомо откуда раздаются невнятные звуки пения, но никого нет вокруг, только пески. Они издают звуки, когда при слабом ветре начинает сползать песчаный откос.
Поющие пески есть не только в пустынях. Гармоничные мелодии часто возникают, когда идешь по влажному песку на пляже.
Русский путешественник А. Елисеев оставил свои впечатления о Сахаре:
"...в раскаленном воздухе послышались какие-то чарующие звуки, довольно высокие, певучие, не лишенные гармонии, с сильным металлическим оттенком. Они слышались отовсюду, словно их производили невидимые духи пустыни...
Пустыня была безмолвна, но звуки летели и таяли в раскаленной атмосфере, возникая откуда-то сверху и пропадая будто бы в земле... То веселые, то жалостливые, то резкие и крикливые, то нежные и мелодические, они казались говором живых существ, но не звуками мертвой пустыни...
Никакие нимфы древних не могли придумать чего-либо более поразительного и чудесного, чем эти таинственные песни песков".
Всех, кто слышал песни песков, удивляет это явление, и многие пытались объяснить его. Например, древние египтяне считали, что такие звуки являются порождением духов пустыни, и были правы.
Современные ученные считают, что причина возникновения звуков может скрываться в самой структуре песчинки. В ней, как известно, много кварца и других кремнеземов.
Кварц - это окись кремния, наиболее распространенная в земной коре. Его кристаллы обладают рядом выдающихся свойств. Они богаты простыми, то есть замкнутыми, закрытыми формами. Здесь можно найти пирамиды, призмы, ромбоэдры, - более пятисот простых форм. Для кварца характерны образования двойников - симметричных сростков кристаллов.
Но не только многообразием внешних форм удивляет кварц. Его кристалл не имеет центра симметрии, а это верный признак, что он обладает пьезоэлектрическими свойствами.
Поэтому, если сжать кристалл, то на его гранях, перпендикулярных направлению сжатия, возникают разноименные электрические заряды: положительный - на одной грани, отрицательный - на другой.
Так механическая энергия с помощью кристалла кварца превращается в электрическую энергию. Если же снять механическую нагрузку с кристалла и начать его растягивать, то полярность зарядов на гранях меняется на противоположные заряды. И это происходит в кристалле кварца, который сам по себе является изолятором!
Это явление в кварцевых кристаллах было открыто в 1817 году французским кристаллографом Р. Гаюи, и повторно - в 1880 г. французскими учеными братьями Жаном и Пьером Кюри и названо пьезоэлектричеством. Позднее они же обнаружили и обратимость этого эффекта.
Оказалось, что кристалл кварца мог сжиматься или растягиваться, если на его гранях создаются разноименные электрические заряды. При этом электрическая энергия превращалась в механическую энергию.
Именно это свойство кристалла дает основание полагать, что пение песков пустыни связано с пребыванием духов. Так как духи пустыни являются демоническими сущностями, которые представляют собой хаотическое движение электронов.
В демонических сущностях отсутствует ядро и магнетизм. Они представляют собой пустоту, которая окружена, хаотично движущими электронами. Таким образом, демонические сущности являются носителями электрического заряда, который вызывает напряжение на поверхности молекул кристаллов.
В результате этого воздействия кристаллы песка сжимаются и разжимаются, вызывая колебание воздуха, которое проявляется в виде звуков.
Пение песков сильно воздействует на психику человека, вызывая инстинктивный страх. Причину этого страха можно объяснить тем, что человеческая душа в пении песков улавливает "дыхание" смерти, носителем которой является демоническая сущность.
Человек, животное и растение, как живые организмы, не могут подобно демонической сущности переносить напряжение и влиять на кристаллы, не могут вызывать пение песков. Так как атомарная система живых клеток органических тел производит вибрации другой частоты и электромагнитную индукцию, что делает систему организма закрытой в смысле электрического воздействия. То есть электрическая энергия организма захвачена собственным магнитным полем, которое ею и управляет.
И только в том случае, когда духовность человека падает, что снижает потенциал магнитного поля его организма, может образовываться избыток электрической энергии и дополнительное напряжение. Именно это напряжение демоническая сила улавливает и переносит. Этот избыток электричества негативно влияет в первую очередь на кристаллические структуры самого человеческого организма, а затем на кристаллические тела, которые его окружают. Например, на ювелирные украшения, которые носит человек. Поэтому в древности по состоянию камней-амулетов прогнозировали состояние здоровья человека и даже его будущее. Обращали внимание на молоко, которое чутко реагирует на присутствие в доме нечистой силы.
В результате исследований было установлено, что кварц в виде пластинки, вырезанной из тела кристалла, обладает такой большой упругостью, что может колебаться с очень высокой частотой, последовательно сжимаясь и растягиваясь при смене полярности электрического поля.
Кварц может вибрировать в широком диапазоне частот, создавая акустические и электрические волны, то есть петь. Когда с бархана сползает песчаная лавина или обрушивается песчаный массив, нижележащие слои песка испытывают переменное давление от движущегося слоя. Они сжимаются под давлением и "распрямляются" после уменьшения давления. Кварцевые кристаллы, имеющиеся в песчинках, начинают колебаться, вибрировать, генерируя акустические волны. Аналогичные процессы возникают и при ходьбе по мокрому песку.
Механические колебания кристалликов кварца в песчинках приводят к образованию электрических зарядов на их гранях, полярность которых меняется синхронно с механическими колебаниями кристаллов. Возникают не только акустические волны, но и переменное электрическое поле определенного спектра частот.
Каждая песчинка, каждый кристаллик поет свою песню на своей частоте. Их голоса складываются. И вот уже звучит многоголосое пение, достаточно громко, диапазон частот широк. Его-то и слышит человеческое ухо. Но только низкие частоты. Высокие частоты наше ухо не воспринимает. Когда движение песка замирает, возбужденные механические и электрические колебания кристаллов кварца в песчинках затухают, звучание прекращается.
В 1957 г. советский ученый К. Баранский установил, что акустические волны можно возбудить непосредственно на поверхности кристалла, что еще выше расширяло диапазон генерируемых частот. Затем американские ученые увеличили потолок частот еще на порядок.
Если поют пески, когда подвергаются механическим и электрическим воздействиям, то по аналогичной причине поет и сама Земля. Пульсирующее огненное сердце планеты, влияние других планет и Солнца вызывают подвижку и вибрацию пород земной коры, заставляя звучать Землю. Ее песня, не воспринимаемая человеческим ухом, далеко разносится в космосе.
Земная кора находится в постоянном напряжении. То тут, то там происходят землетрясения и вулканические извержения, освобождающие опасные зоны от перегрузок на них демонических сущностей - бездуховных пустот.
Количество землетрясений на Земле достигает до ста тысяч в год. Из общего числа землетрясений сильных землетрясений происходит до тысячи в год.
Из очагов деформации земной коры колебания передаются на большие расстояния. Скорость распространения волн очень высока. В гранитных породах для продольных волн она составляет более 5000 метров в секунду, для поперечных - около 2509 метров в секунду.
На своем пути земные волны то сжимают породы, то растягивают их, вызывая образование мощных электрических зарядов разной полярности. Особенно они велики в эпицентре сжатия или растягивания, где земные породы испытывают очень сильные, вплоть до разрыва, деформации.
Электрические разряды в виде сильнейших подземных молний стремительно распространяются по зонам наименьшего сопротивления и часто прорываются из глубин на поверхность Земли, оставляя оплавленные твердые породы или странные круглые отверстия.
В том, что Земля звучит, нет ничего странного. Ее твердые породы, базальта, граниты, песчаники и другие имеют кристаллическую структуру. В них много кварцевых образований. При деформации кристаллов возникают не только акустические и электрические волны, но протекают попутно и другие физические и химические процессы.
Грозный рокот глубинных бурь "слышат" многие животные, птицы, насекомые. Они даже могут быть "оповещателями", приближающегося подземного удара. И только человек, как правило, оказывается застигнутым врасплох. Так как перестал воспринимать себя частью природы и следить за происходящими процессами в природе.
Кроме "пения" кристаллы вибрируют в определенном диапазоне светового спектра, поэтому приобретают свой цвет, например, ювелирные камни. Камни прозрачные и с сильным блеском способны пропускать и модифицировать лучистую энергию. Цветность минералов связывается с включением в их кристаллическую решетку ионов металлов, легко меняющих свою валентность, способных при минимальной подаче энергии отдавать свои электроны.
Часть этих электронов "бродит" среди атомов кристаллической решетки, взаимодействуя с ними, обмениваясь с ними энергией. В результате в кристалле возникают и непрерывно меняют свой узор местные нарушения кристаллической решетки. Таким образом, кристалл интенсивно живет своей "внутренней жизнью", внешние проявления которой и составляют наборы "магических" свойств камней-амулетов.
К таким металлам, примеси соединений, которых заметно изменяют энергетический силуэт кристалла, относятся железо, медь, марганец, хром, редкоземельные элементы.

Мал золотник, да дорог

(Об исследованиях Торричелли читайте

Замечательный французский мыслитель, писатель и ученый Блез Паскаль, современник Торричелли, понял, что на основе таких сообщающихся сосудов легко создать могучий «жидкий» подъемный кран или гидравлический пресс.

Для этого диаметр у одной из сообщающихся трубок необходимо сделать намного меньше, чем у другой. Тогда с помощью сравнительно небольшого давления, приложенного к малой трубке, можно передвинуть тяжелую массу жидкости в другом сосуде!

Принцип, предложенный Паскалем, лежит в основе самых современных гидравлических машин и аппаратов, позволяющих получать очень большие давления, необходимые, в частности, для «насильственного» соединения водорода с металлами.

Так, еще не зная атомной и молекулярной структуры тел, ученые прошлого обнаруживали удивительные особенности поведения веществ, которые удалось объяснить только в XX веке…

Чтобы проверить механические свойства материала для сложных конструкций, его растягивают в раскаленном состоянии.

В твердом теле атомы почти не меняются местами, если, конечно, не нагревать его. Нагрев сильно увеличивает быстроту и размах движений атомов около положений равновесия. При высокой температуре твердое тело можно расплавить или даже испарить.

Особую группу твердых тел составляют кристаллы, где атомы распределены в строгом геометрическом порядке. Существует много возможностей расположить атомы в правильные ряды, шеренги и составить из них разнообразные геометрические фигуры, хотя, как доказал еще в прошлом веке русский ученый Е, С. Федоров, наиболее устойчивых конструкций кристаллической решетки ровно 230. Все последующие проверки теории Федорова показали, что в природе не существует других, не предсказанных Федоровым стабильных кристаллических структур.

Строгая периодичность внутреннего строения кристаллов оказалась очень полезной для современной техники.

Свободный электрон, возникший в кристалле под воздействием на него температуры или света, может пройти гораздо большие расстояния, чем в обычном твердом теле, что очень важно при создании приборов для радиотехники.

Разнообразны кристаллы, существующие в природе! Снег, лежащий ранней зимой между кустами и деревьями, тоже состоит из крохотных кристалликов.

Свет проникает в кристалл глубже, чем в твердое тело того же химического состава, но состоящее из множества случайных, хаотично расположенных по отношению друг к другу атомных групп. И это свойство широко используется в оптике - лучшие линзы и призмы делаются, конечно, из кристаллов.

Обнаружены кристаллы, в которых после приложения давления на разных гранях возникают электрические заряды противоположного знака. И наоборот - после пропускания электрического тока эти кристаллы могут сильно сжиматься или расширяться.

Такие удивительные кристаллы, получившие название пьезо-кристаллов , сейчас широко применяются в электронной технике - ведь даже давление звуковой волны вызывает в них появление и ток электрических зарядов, который может быть легко обнаружен и передан по проводам…

Свойства кристаллов

Глубокое изучение свойств столь полезных кристаллов показало, что в них возможно достаточно свободное движение атомов. Более того - в кристаллах были найдены различные несовершенства, нарушения в правильном строении кристаллической решетки, пустоты, сдвиги атомов. Пользуясь этими нарушениями структуры, инородные примеси, посторонние металлические или газовые включения могут довольно глубоко проникнуть в кристалл, особенно когда его получают из расплава или раствора исходного вещества.

Именно поэтому прочность реальных кристаллов чаще всего в десятки, а то и в сотни раз меньше прочности, которой они должны были бы обладать по теоретическим расчетам.

Кристаллы-усы, увеличенные в 150 раз.Сплетенные с волокнами графита, стекла и полимеров кристаллические усы позволили получить новые материалы,легкие и очень прочные.

Около двадцати лет назад в нескольких лабораториях мира внимательные исследователи обнаружили под микроскопом, что на поверхности многих кристаллов самопроизвольно вырастают небольшие «усики». Но по атомным масштабам – это небоскребы, где высота в десятки и сотни раз превышает ширину основания.

Образование крохотных усиков (или, как их теперь называют, нитевидных кристаллов ) происходит за счет малозаметных передвижений атомов по поверхности кристалла. Ведь атомы поверхности опутаны электронными связями только с одной стороны - из глубины кристалла, и это дает им иногда возможность оторваться от соседей и двигаться. Такие блуждающие атомы начинают пристраиваться к случайному выступу на поверхности и окружают его. Рост выступа вверх происходит, как правило, по спирали. Образуется башня-конус, напоминающая устремленный в небо памятник III Интернационалу, символ братства народов, проект которого выполнил в двадцатых годах нашего столетия выдающийся художник и конструктор Владимир Татлин, Недавно проект этого памятника можно было видеть в залах Музея изобразительных искусств им. Пушкина в Москве.

Интересен механизм роста кристаллов-усиков , но самым необычным оказалось… полное отсутствие в них каких-либо дефектов. Прочность крохотных кристаллов в сотни раз превышала прочность массивных кристаллов, на поверхности которых они выросли, и полностью соответствовала теоретической.

Помню, когда в начале шестидесятых годов в одном из журналов появился мой обзор работ по нитевидным кристаллам-усикам, к нам в лабораторию стали приходить многочисленные посетители. Одних интересовали уникальные свойства новых материалов, других беспокоила возможность «незапланированного» роста кристаллов в радиотехнических схемах, где такие усики могли привести к внезапному выходу из строя электронных приборов.

Большую радость открытие нитевидных кристаллов вызвало у всех, кому необходимы прочные и легкие конструкционные материалы. Нитевидные кристаллы стали вплетать в полимерные волокна, соединять с металлами, чтобы получить канаты, ленты и трубы невиданной прочности и долговечности.

Cтраница 1


Физическое свойство кристалла может обладать и более высокой симметрией, чем кристалл, но оно обязательно должно включать в себя и симметрию точечной группы кристалла. Из-за анизотропии кристалла его свойства по разным направлениям различны. Однако при симметричных преобразованиях кристалл должен оставаться тождественным в отношении всех свойств, как геометрических, так и физических. Физические свойства по кристаллографически эквивалентным направлениям должны быть одинаковыми.  

Физические свойства кристаллов, как известно, неодинаковы в различных направлениях.  

Физические свойства кристалла - упругость, плотность, размеры зависят от температуры, поэтому и его собственная частота v0 также зависит от температуры.  

Физические свойства кристалла зависят, главным образом от характера химических сил, связывающих атомы в кристаллическую решетку, и в значительно меньшей степени - от конкретного расположения атомов друг относительно друга. Однако вследствие периодичности атомного строения относительно небольшие нюансы физических свойств, связанные с особенностями расположения атомов, легко обнаруживаются - они проявляются макроскопически в анизотропии кристалла. Это позволяет использовать физические свойства наряду с другими для исследования взаимного расположения атомов или молекул в ячейке кристалла.  

Рассмотрены физические свойства кристаллов в непосредственной связи с энергией и характером межатомного взаимодействия.  

Все физические свойства кристаллов оказываются связанными с их симметрией. А именно, элементы симметрии любого физического свойства кристалла должны включать элементы симметрии его точечной группы преобразований. Это утверждение носит название принципа Неймана и играет важную роль в кристаллофизике.  

Радиационное дефекты изменяют физические свойства кристаллов: ионную проводимость, плотность, твердость, оптические свойства.  


Геометрическая форма и физические свойства кристаллов определяются собственной пространственной решеткой, для которой характерны взаимное расположение частиц, образующих кристалл, расстояние и природа связи между ними.  

Радиационные дефекты изменяют физические свойства кристаллов: ионную проводимость, плотность, твердость, оптические свойства. Радиационные дефекты, образующиеся в твердых телах при невысоких температурах, представляют большой интерес, если они являются достаточно устойчивыми. Наличие устойчивых дефектов после облучения изменяет активность твердых катализаторов.  

Междузонные переходы.  

Структура полос определяет физические свойства кристалла, причем все сказанное выше для одномерной цепочки справедливо it для реальных трехмерных кристаллов: кристалл имеет свойства металла, когда самая верхняя полоса из числа занятых электронами заполнена только частично.  

Однако есть такие физические свойства квантовых кристаллов, в которых большие нулевые колебания атомов играют доминируют щую роль. К таким свойствам, в первую очередь, можно отнести возможность туннельного движения атомов в кристаллической решетке, которая всецело определяется чисто квантовым эффектом туннелирования частицы сквозь потенциальный барьер. Наличие туннельного движения может вызвать перестройку основного состояния квантового кристалла.  

Чтобы применять на практике физическое свойство кристалла, нужно знать, изотропно оно или анизотропно; если анизотропно, то установить характер его анизотропии, а если возможно тензорное описание, то найти ранг тензора, характеризующего это свойство.  

Свойства кристаллов, форма и сингония (кристаллографические системы)

Важным свойством кристалла является определенное соответствие между разными гранями - симметрия кристалла. Выделяются следующие элементы симметрии:

1. Плоскости симметрии: разделяют кристалл на две симметричные половины, такие плоскости также называют "зеркалами" симметрии.

2. Оси симметрии: прямые линии, проходящие через центр кристалла. Вращение кристалла вокруг этой оси повторяет форму исходного положения кристалла. Различают оси симметрии 3-го, 4-го и 6-го порядка, что соответствует числу таких позиций при вращении кристалла на 360 o .

3. Центр симметрии: грани кристалла, соответствующие параллельной грани, меняются местами при вращении на 180 o вокруг этого центра. Комбинация этих элементов симметрии и порядков дает 32 класса симметрии для всех кристаллов. Эти классы, в соответствии с их общими свойствами, можно объединить в семь сингонии (кристаллографических систем). По трехмерным осям координат можно определить и оценить позиции граней кристаллов.

Каждый минерал принадлежит к одному классу симметрии, поскольку имеет один тип кристаллической решетки, который его и характеризует. Напротив, минералы, имеющие одинаковый химический состав, могут образовывать кристаллы двух и более классов симметрии. Такое явление называется полиморфизмом. Есть не единичные примеры полиморфизма: алмаз и графит, кальцит и арагонит, пирит и марказит, кварц, тридимит и кристобалит; рутил, анатаз (он же октаэдрит) и брукит.

СИНГОНИИ (КРИСТАЛЛОГРАФИЧЕСКИЕ СИСТЕМЫ) . Все формы кристаллов образуют 7 сингонии (кубическую, тетрагональную, гексагональную, тригональную, ромбическую, моноклинную, триклинную). Диагностическими признаками сингонии являются кристаллографические оси и углы, образуемые этими осями.

В триклинной сингонии присутствует минимальное число элементов симметрии. За ней в порядке усложнения следуют моноклинная, ромбическая, тетрагональная, тригональная, гексагональная и кубическая сингонии.

Кубическая сингония . Все три оси имеют равную длину и расположены перпендикулярно друг другу. Типичные формы кристаллов: куб, октаэдр, ромбододекаэдр, пентагондодекаэдр, тетрагон-триоктаэдр, гексаоктаэдр.

Тетрагональная сингония . Три оси расположены перпендикулярно друг другу, две оси имеют одинаковую длину, третья (главная ось) либо короче, либо длиннее. Типичные формы кристаллов - призмы, пирамиды, тетрагоны, трапецоэдры и бипирамиды.

Гексагональная сингония . Третья и четвертая оси расположены наклонно к плоскости, имеют равную длину и пересекаются под углом 120 o . Четвертая ось, отличающаяся от остальных по размеру, расположена перпендикулярно к другим. И оси и углы по расположению аналогичны предыдущей сингонии, но элементы симметрии весьма разнообразны. Типичные формы кристаллов - трехгранные призмы, пирамиды, ромбоэдры и скаленоэдры.

Ромбическая сингония . Характерны три оси, перпендикулярные друг другу. Типичные кристаллические формы - базальные пинакоиды, ромбические призмы, ромбические пирамиды и бипирамиды.

Моноклинная сингония . Три оси разной длины, вторая перпендикулярна другим, третья находится под острым углом к первой. Типичные формы кристаллов - пинакоиды, призмы с кососрезанными гранями.

Триклинная сингония . Все три оси имеют разную длину и пересекаются под острыми углами. Типичные формы - моноэдры и пинакоиды.

Форма и рост кристаллов . Кристаллы, принадлежащие к одному минеральному виду, имеют схожий внешний вид. Кристалл поэтому можно охарактеризовать как сочетание внешних параметров (граней, углов, осей). Но относительный размер этих параметров довольно разный. Следовательно, кристалл может менять свой облик (чтобы не сказать внешность) в зависимости от степени развития тех или иных форм. Например, пирамидальный облик, где все грани сходятся, столбчатый (в совершенной призме), таблитчатый, листоватый или глобулярный.

Два кристалла, имеющих то же сочетание внешних параметров, могут иметь разный вид. Сочетание это зависит от химического состава среды кристаллизации и других условий формирования, к которым относятся температура, давление, скорость кристаллизации вещества и т. д. В природе изредка встречаются правильные кристаллы, которые формировались в благоприятных условиях - это, например, гипс в глинистой среде или минералы на стенках жеоды. Грани таких кристаллов хорошо развиты. Наоборот, кристаллы, образовавшиеся в изменчивых или неблагоприятных условиях, часто бывают деформированы.

АГРЕГАТЫ . Часто встречаются кристаллы, которым не хватало пространства для роста. Эти кристаллы срастались с другими, образуя неправильные массы и агрегаты. В свободном пространстве среди горных пород кристаллы развивались совместно, образуя друзы, а в пустотах - жеоды. По своему строению такие агрегаты весьма разнообразны. В мелких трещинах известняков встречаются образования, напоминающие окаменевший папоротник. Их называют дендритами, сформировавшимися в результате образования оксидов и гидрооксидов марганца и железа под воздействием растворов, циркулировавших в этих трещинах. Следовательно, дендриты никогда не образуются одновременно с органическими остатками.

Двойники . При формировании кристаллов часто образуются двойники, когда два кристалла одного минерального вида срастаются друг с другом по определенным правилам. Двойники часто представляют собой индивидов, сросшихся под углом. Нередко проявляется псевдосимметрия - несколько кристаллов, относящихся к низшему классу симметрии, срастаются, образуя индивиды с псевдосимметрией более высокого порядка. Так, арагонит, относящийся к ромбической сингонии, часто образует двойниковые призмы с гексагональной псевдосимметрией. На поверхности таких срастаний наблюдается тонкая штриховка, образованная линиями двойникования.

ПОВЕРХНОСТЬ КРИСТАЛЛОВ . Как уже сказано, плоские поверхности редко бывают гладкими. Довольно часто на них наблюдается штриховка, полосчатость или бороздчатость. Эти характерные признаки помогают при определении многих минералов - пирита, кварца, гипса, турмалина.

ПСЕВДОМОРФОЗЫ . Псевдоморфозы - это кристаллы, имеющие форму другого кристалла. Например, встречается лимонит в форме кристаллов пирита. Псевдоморфозы образуются при полном химическом замещении одного минерала другим с сохранением формы предыдущего.


Формы агрегатов кристаллов могут быть очень разнообразны. На фото - лучистый агрегат натролита.
Образец гипса со сдвойникованными кристаллами в виде креста.

Физические и химические свойства. Не только внешняя форма и симметрия кристалла определяются законами кристаллографии и расположением атомов - это относится и к физическим свойствам минерала, которые могут быть разными в различных направлениях. Например, слюда может разделяться на параллельные пластинки только в одном направлении, поэтому ее кристаллы анизотропны. Аморфные вещества одинаковы по всем направлениям, и поэтому изотропны. Такие качества также важны для диагностики этих минералов.

Плотность. Плотность (удельный вес) минералов представляет собой отношение их веса к весу такого же объема воды. Определение удельного веса является важным средством диагностики. Преобладают минералы с плотностью 2-4. Упрощенная оценка веса поможет при практической диагностике: легкие минералы имеют вес от 1 до 2, минералы средней плотности - от 2 до 4, тяжелые минералы от 4 до 6, очень тяжелые - более 6.

МЕХАНИЧЕСКИЕ СВОЙСТВА . К ним относятся твердость, спайность, поверхность скола, вязкость. Эти свойства зависят от кристаллической структуры и используются с целью выбора методики диагностирования.

ТВЕРДОСТЬ . Довольно легко поцарапать кристалл кальцита кончиком ножа, но сделать это с кристаллом кварца вряд ли получится - лезвие скользнет по камню, не оставив царапины. Значит, твердость у этих двух минералов различная.

Твердостью по отношению к царапанью называют сопротивление кристалла попытке внешней деформации поверхности, другими словами, сопротивление механической деформации извне. Фридрих Моос (1773-1839) предложил относительную шкалу твердости из степеней, где каждый минерал имеет твердость к процарапыванию выше, чем предыдущий: 1. Тальк. 2. Гипс. 3. Кальцит. 4. Флюорит. 5. Апатит. 6. Полевой шпат. 7. Кварц. 8. Топаз. 9. Корунд. 10. Алмаз. Все эти значения применимы только к свежим, не подвергшимся выветриванию образцам.

Можно оценить твердость упрощенным способом. Минералы с твердостью 1 легко царапаются ногтем; при этом они жирные на ощупь. Поверхность минералов с твердостью 2 также царапается ногтем. Медная проволока или кусочек меди царапает минералы с твердостью 3. Кончик перочинного ножа царапает минералы до твердости 5; хороший новый напильник - кварц. Минералы с твердостью более 6 царапают стекло (твердость 5). От 6 до 8 не берет даже хороший напильник; при таких попытках летят искры. Чтобы определить твердость, испытывают образцы с возрастающей твердостью, пока они поддаются; затем берут образец, который, очевидно, еще тверже. Противоположным образом надо действовать, если необходимо определить твердость минерала, окруженного породой, твердость которой ниже, чем у минерала, нужного для образца.


Тальк и алмаз, два минерала, занимающие крайние позиции в шкале твердости Мооса.

Легко сделать вывод на основании того, скользит ли минерал по поверхности другого или царапает ее с легким скрипом. Могут наблюдаться следующие случаи:
1. Твердость одинакова, если образец и минерал взаимно не царапают друг друга.
2. Возможно, что оба минерала друг друга царапают, поскольку верхушки и выступы кристалла могут быть тверже, чем грани или плоскости спайности. Поэтому можно поцарапать грань кристалла гипса или плоскость его спайности вершиной другого кристалла гипса.
3. Минерал царапает первый образец, а на нем делает царапину образец более высокого класса твердости. Его твердость находится посредине между используемыми для сравнения образцами, и ее можно оценить в полкласса.

Несмотря на очевидную простоту такого определения твердости, многие факторы могут привести к ложному результату. Например, возьмем минерал, свойства которого сильно разнятся по разным направлениям, как у дистена (кианита): по вертикали твердость 4-4,5, и кончик ножа оставляет четкий след, но в перпендикулярном направлении твердость 6-7 и ножом минерал вообще не царапается. Происхождение названия этого минерала связано с этой особенностью и подчеркивает ее весьма выразительно. Поэтому необходимо проводить испытание твердости по разным направлениям.

Некоторые агрегаты имеют более высокую твердость, чем те компоненты (кристаллы или зерна), из которых они состоят; может оказаться, что плотный обломок гипса трудно поцарапать ногтем. Наоборот, некоторые пористые агрегаты менее твердые, что объясняется наличием пустот между гранулами. Поэтому мел царапается ногтем, хотя состоит из кристаллов кальцита с твердостью 3. Другой источник ошибок - минералы, испытавшие какие-то изменения. Оценить твердость порошкообразных, выветрелых образцов или агрегатов чешуйчатого и игольчатого строения простыми средствами невозможно. В таких случаях лучше использовать другие методы.

Спайность . Ударом молотка или нажатием ножа кристаллы по плоскостям спайности кристалл иногда можно разделить на пластинки. Спайность проявляется по плоскостям с минимальным сцеплением. Многие минералы обладают спайностью по нескольким направлениям: галит и галенит - параллельно граням куба; флюорит - по граням октаэдра, кальцит - ромбоэдра. Кристалл слюды-мусковита; хорошо видны плоскости спайности (на фото справа).

Такие минералы, как слюда и гипс, имеют совершенную спайность в одном направлении, а в других направлениях спайность несовершенная или вообще отсутствует. При тщательном наблюдении можно заметить внутри прозрачных кристаллов тончайшие плоскости спайности по хорошо выраженным кристаллографическим направлениям.

Поверхность излома . Многие минералы, например кварц и опал, не имеют спайности ни в одном направлении. Их основная масса раскалывается на неправильные куски. Поверхность скола можно описать как плоскую, неровную, раковистую, полураковистую, шероховатую. Металлы и крепкие минералы имеют шероховатую поверхность скола. Это свойство может служить диагностическим признаком.

Другие механические свойства . Некоторые минералы (пирит, кварц, опал) раскалываются на куски под ударом молотка - они являются хрупкими. Другие, наоборот, превращаются в порошок, не давая обломков.

Ковкие минералы можно расплющить, как, например, чистые самородные металлы. Они не образуют ни порошка, ни обломков. Тонкие пластинки слюды можно согнуть, как фанеру. После прекращения воздействия они вернутся в исходное состояние - это свойство эластичности. Другие, как гипс и пирит, можно согнуть, но они сохранят деформированное состояние - это свойство гибкости. Такие признаки позволяют распознавать сходные минералы - например, отличить эластичную слюду от гибкого хлорита.

Окраска . Некоторые минералы имеют настолько чистый и красивый цвет, что их используют как краски или лаки. Часто их названия применяют в обиходной речи: изумрудно-зеленый, рубиново-красный, бирюзовый, аметистовый и др. Окраска минералов, один из основных диагностических признаков, не является ни постоянной, ни вечной.

Есть ряд минералов, у которых окраска постоянная - малахит всегда зеленый, графит - черный, самородная сера - желтая. Такие распространенные минералы, как кварц (горный хрусталь), кальцит, галит (поваренная соль), бесцветны, когда в них нет примесей. Однако наличие последних вызывает окраску, и мы знаем голубую соль, желтый, розовый, фиолетовый и коричневый кварц. Флюорит обладает целой гаммой окрасок.

Присутствие элементов-примесей в химической формуле минерала приводит к весьма специфической окраске. На этой фотографии изображен зеленый кварц (празем), в чистом виде совершенно бесцветный и прозрачный.

Турмалин, апатит и берилл имеют различные цвета. Окраска не является несомненным диагностическим признаком минералов, обладающих различными оттенками. Цвет минерала зависит также от наличия элементов-примесей, входящих в кристаллическую решетку, а также различных пигментов, загрязнений, включений в кристалле-хозяине. Иногда он может быть связан с радиоактивным облучением. У некоторых минералов цвет меняется в зависимости от освещения. Так, александрит при дневном свете зеленый, а при искусственном освещении - фиолетовый.

У некоторых минералов изменяется интенсивность окраски при повороте граней кристалла относительно света. Цвет кристалла кордиерита при вращении меняется от голубого до желтого. Причина такого явления состоит в том, что подобные кристаллы, называемые плеохроичными, по-разному поглощают свет в зависимости от направления луча.

Цвет некоторых минералов может изменяться также при наличии пленки, имеющей другую окраску. Эти минералы в результате окисления покрываются налетом, который, возможно, как-то смягчает действие солнечного или искусственного света. Некоторые драгоценные камни теряют свою окраску, если в течение какого-то периода подвергаются солнечному освещению: изумруд теряет свой глубокий зеленый цвет, аметист и розовый кварц бледнеют.

Многие минералы, содержащие серебро (например, пираргирит и прустит), также чувствительны к солнечным лучам (инсоляции). Апатит под воздействием инсоляции покрывается черной вуалью. Коллекционерам следует предохранять такие минералы от воздействия света. Красный цвет реальгара на солнце переходит в золотисто-желтый. Подобные изменения окраски совершаются в природе очень медленно, но можно искусственно очень быстро изменить цвет минерала, ускорив процессы, происходящие в природе. Например, можно при нагревании получить желтый цитрин из фиолетового аметиста; алмазы, рубины и сапфиры искусственно "улучшают" с помощью радиоактивного облучения и ультрафиолетовых лучей. Горный хрусталь благодаря сильному облучению превращается в дымчатый кварц. Агат, если его серый цвет выглядит не слишком привлекательно, можно перекрасить, опустив в кипящий раствор обыкновенного анилинового красителя для тканей.

ЦВЕТ ПОРОШКА (ЧЕРТА) . Цвет черты определяется при трении о шероховатую поверхность неглазированного фарфора. При этом нужно не забывать, что фарфор имеет твердость 6-6,5 по шкале Мооса, и минералы с большей твердостью оставят только белый порошок растертого фарфора. Всегда можно получить порошок в ступке. Окрашенные минералы всегда дают более светлую черту, неокрашенные и белые - белую. Обычно белая или серая черта наблюдается у минералов, окрашенных искусственно, или с загрязнениями и пигментом. Часто она как бы затуманена, так как в разбавленной окраске ее интенсивность обуславливается концентрацией красящего вещества. Цвет черты минералов с металлическим блеском отличается от их собственного цвета. Желтый пирит дает зеленовато-черную черту; черный гематит - вишнево-красную, черный вольфрамит - коричневую, а касситерит - почти неокрашенную черту. Цветная черта позволяет быстрее и легче определить по ней минерал, чем черта разбавленного цвета или бесцветная.

БЛЕСК . Как и цвет, это эффективный метод определения минерала. Блеск зависит оттого, как свет отражается и преломляется на поверхности кристалла. Различают минералы с металлическим и неметаллическим блеском. Если их различить не удается, можно говорить о полуметаллическом блеске. Непрозрачные минералы металлов (пирит, галенит) обладают большой отражательной способностью и имеют металлический блеск. Для другой важной группы минералов (цинковая обманка, касситерит, рутил и др.) определить блеск затруднительно. Для минералов с неметаллическим блеском различают следующие категории в соответствии с интенсивностью и свойствами блеска:

1. Алмазный блеск, как у алмаза.
2. Стеклянный блеск.
3. Жирный блеск.
4. Тусклый блеск (у минералов с плохой отражательной способностью).

Блеск может быть связан со строением агрегата и направлением господствующей спайности. Минералы, имеющие тонкослоистое сложение, имеют перламутровый блеск.

ПРОЗРАЧНОСТЬ . Прозрачность минерала - качество, которое отличается большой изменчивостью: непрозрачный минерал можно легко отнести к прозрачным. Основная часть бесцветных кристаллов (горный хрусталь, галит, топаз) относятся к этой группе. Прозрачность зависит от строения минерала - некоторые агрегаты и мелкие зерна гипса и слюды кажутся непрозрачными или просвечивающими, в то время как кристаллы этих минералов прозрачны. Но если рассматривать с лупой маленькие гранулы и агрегаты, можно видеть, что они прозрачны.

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ . Показатель преломления представляет собой важную оптическую константу минерала. Она измеряется с помощью специальной аппаратуры. Когда луч света проникает внутрь анизотропного кристалла, происходит преломление луча. Такое двойное лучепреломление создает впечатление, что существует виртуальный второй объект параллельно изучаемому кристаллу. Подобное явление можно наблюдать через прозрачный кристалл кальцита.

ЛЮМИНЕСЦЕНЦИЯ . Некоторые минералы, такие как шеелит и виллемит, облучаемые ультрафиолетовыми лучами, светятся специфическим светом, что в ряде случаев может некоторое время продолжаться. Флюорит при нагревании в темном месте светится - это явление называется термолюминесценция. При трении некоторых минералов возникает другой тип свечения - триболюминесценция. Эти разные типы люминесценции являются характеристикой, позволяющей легко диагностировать ряд минералов.

ТЕПЛОПРОВОДНОСТЬ . Если взять в руку кусок янтаря и кусок меди, покажется, что один из них теплее другого. Это впечатление обусловлено различной теплопроводностью данных минералов. Так можно различить стеклянные имитации драгоценных камней; для этого нужно приложить камушек к щеке, где кожа более чувствительна к теплу.

Следующие свойства можно определить по тому, какие ощущения они вызывают у человека. На ощупь графит и тальк кажутся гладкими, а гипс и каолин - сухими и шероховатыми. Растворимые в воде минералы, такие как галит, сильвинит, эпсомит, имеют специфический вкус - соленый, горький, кислый. Некоторые минералы (сера, арсенопирит и флюорит) обладают легко распознаваемым запахом, который возникает сразу при ударе по образцу.

МАГНЕТИЗМ . Фрагменты или порошок некоторых минералов, в основном имеющих повышенное содержание железа, можно отличить от других сходных минералов с помощью магнита. Магнетит и пирротин сильно магнитны и притягивают железные опилки. Некоторые минералы, например гематит, приобретают магнитные свойства, если их раскалить докрасна.

ХИМИЧЕСКИЕ СВОЙСТВА . Определение минералов на основе их химических свойств требует, помимо специального оборудования, обширных знаний в области аналитической химии.

Есть один простой метод для определения карбонатов, доступный непрофессионалам - действие слабого раствора соляной кислоты (вместо нее можно брать обыкновенный столовый уксус - разбавленную уксусную кислоту, которая есть на кухне). Таким способом можно легко отличить бесцветный образец кальцита от белого гипса - нужно капнуть на образец кислоты. Гипс на это не реагирует, а кальцит "вскипает" при выделении углекислого газа.