Проектирование и строительство домов

Проектирование и строительство домов

» » Как происходит преобразование тепловой энергии в электрическую. Преобразование электрической энергии в тепловую Преобразуется в тепловую энергию которая

Как происходит преобразование тепловой энергии в электрическую. Преобразование электрической энергии в тепловую Преобразуется в тепловую энергию которая

Электрический ток представляет собой направленное движение электрических частиц. При столкновении движу­щихся частиц с ионами или молекулами кинети­ческая энергия движущихся частиц частично передается ионам или молекулам, вследствие чего происходит нагре­вание проводника. Таким образом, электрическая энергия

преобразуется в тепловую, которая тратится на нагрев провода и рассеивается в окружающую среду.

Скорость преобразования электрической энергии в теп­ловую определяется мощностью:

Р =UI

или, учитывая, что U = Ir , получаем:

P=UI=I 2 r.

Электрическая энергия, переходящая в тепловую,

W = Pt = Prt.

Q = I 2 rt.

Полученное выражение, определяющее соотношение меж­ду количеством выделенного тепла, силой тока, сопротивлением и временем, было найдено в 1844 г. опытным путем русским академиком Э. X. Ленцем и одновре­менно английским ученым Джоулем. Оно известно теперь под названием за­кона Джоуля-Лен­ца: количество тепла,выделенного током в провод­нике,пропорцио­нально квадрату силы тока,сопро­тивлению проводника и времени прохождения то­к а.

Преобразование электрической энергии в тепло находит полезное применение в разнообразных нагревательных и осветительных приборах и устройствах.

В остальных приборах и устройствах преобразование электрической энергии в тепловую является непроизводи­тельным расходом энергии (потерями), снижающими к. п. д. их. Кроме того, тепло, вызывая нагревание этих устройств,

ограничивает их нагрузку, а при перегрузке повышение температуры может повести к повреждению изоляции или сокращению срока работы установки.

Пример 1 -7. Определить количество тепла, выделенное в нагрева­тельном приборе в течение 15 мин, если сопротивление прибора 22 ом, а напряжение сети 110в.

Сила тока

I = U : r = 110: 22 = 5a

Количество тепла, выделенное в приборе,

Q = I 2 r t = 5 2 22 15 60 = 49 500 дж.

Статья на тему Преобразование электрической энергии в тепловую

Известные способы прямого преобразования тепловой энергии в электрическую

подразделяются на три вида:

Магнитогидродинамические,

Термоэлектрические,

Термоэмиссионные.

МГД-метод и МГД-генератор. Магнитогидродинамический способ прямого преобра-

зования тепловой энергии в электрическую является наиболее разработанным для получения

больших количеств электроэнергии и лежит в основе МГД-генератора, опытные и опытно-

промышленные образцы которого были созданы в Советском Союзе.

Сущность МГД-метода заключается в следующем.

В результате сжигания органического топлива, например, природного газа, образуются

продукты сгорания. Их температура должна быть не ниже 2500 °С. При этой температуре

газ становится электропроводным , переходит в плазменное состояние. Это означает, что

происходит его ионизация. Плазма при такой относительно низкой температуре (низкотемпе-

ратурная плазма) ионизирована лишь частично . Она состоит не только из продуктов иониза-

ции - электрически заряженных свободных электронов и положительно заряженных ионов,

но и из сохранившихся целыми, еще не подвергшихся ионизации молекул. Для того чтобы

низкотемпературная плазма продуктов сгорания имела достаточную электропроводность при

температуре около 2500 °С, к ней добавляют присадку - легкоионизирующееся вещество

(натрий, калий или цезий). Ее пары ионизируются при более низкой температуре.

В основе работы МГД-генератора лежит закон Фарадея об электромагнитной индук-

ции: в проводнике, движущемся в магнитном поле, индуцируется ЭДС . В МГД-генераторе

роль движущегося проводника выполняет движущийся поток низкотемпературной плазмы,

т. е. поток ионизированного токопроводящего газа. На рис. 2.12 приведена принципиальная

схема МГД-генератора: между полюсами постоянного магнита расположен расширяющийся

канал, на противоположных стенках которого размещены электроды, замкнутые на внеш-

нюю цепь. Плазма с небольшой добавкой легкоионизирующегося вещества при температу-

ре около 2700-2500 °С поступает в канал МГД-генератора и за счет уменьшения ее тепловой

энергии разгоняется там до скорости, близкой к звуковой и даже более высокой (до 2000 м/с и более). Протекая по каналу, электропроводная плазма пересекает силовые линии специально

созданного магнитного поля, имеющего большую индукцию. Если направление движения

потока перпендикулярно силовым линиям магнитного поля, а электропроводность плаз-

мы, скорость потока и индукция магнитного поля достаточно велики, то в направлении,

перпендикулярном движению потока и силовым линиям магнитного поля, от одной стенки

канала к другой возникнет ЭДС и электрический ток, протекающий через плазму. Взаимодействие этого электрического тока с магнитным потоком создает силу, тормозящую движение плазмы по каналу. Таким образом, кинетическая энергия потока плазмы превращается в электрическую энергию. На выходе температура плазмы равна примерно 300 °С. В

МГД-генераторе осуществляется следующая цепь преобразований энергии:

тепловая кинетическая энергия электрическая

Тепловая энергия занимает особое место в человеческой деятельности, поскольку она используется во всех секторах экономики, сопровождает большинство промышленных процессов и жизнедеятельность людей. В большинстве случаев отработанное тепло теряется безвозвратно и без какой-либо экономической выгоды. Этот потерянный ресурс уже ничего не стоит, поэтому повторное его использование будет способствовать как уменьшению энергетического кризиса, так и защите окружающей среды. Поэтому новые способы преобразования тепловой в электрическую энергию и конверсия отработанного тепла в электричество сегодня как никогда актуальны.

Преобразование природных источников энергии в электричество, тепло или кинетическую энергию требует максимальной эффективности, особенно на газовых и угольных электростанциях, чтобы снизить объемы выбросов СО 2 . Существуют различные способы преобразование тепловой энергии в электрическую, зависящие от типов первичной энергии.

Среди ресурсов энергии уголь и природный газ используются для выработки электроэнергии путем сжигания (тепловая энергия), а уран путем ядерного деления (ядерной энергии), чтобы использовать энергию пара для вращения паровой турбины. Десять крупнейших стран производителей электроэнергии на 2017 год представлены на фото.

Таблица эффективности работы существующих систем преобразование тепловой энергии в электрическую.

Выбор метода преобразования тепловой энергии в электрическую и его экономическая целесообразность зависят от потребностей в энергоносителях, наличия природного топлива и достаточности площадки строительства. Вид генерации варьируется во всем мире, что приводит к широкому диапазону цен на электроэнергию.

Технологии преобразования тепловой энергии в электрическую, такие как ТЭС, АЭС, КЭС, ГТЭС, ТЭП, термоэлектрические генераторы, МГД-генераторы имеют разные преимущества и недостатки. Исследовательский институт электроэнергетики (EPRI) иллюстрирует плюсы и минусы технологий генерации на природных энергетических ресурсах, рассматривая такие критические факторы, как строительство и затраты на электроэнергию, на землю, требования к воде, выбросы CO 2 , отходы, доступность и гибкость.

Результаты EPRI подчеркивают, что при рассмотрении технологий производства электроэнергии нет единого подхода к решению всех проблем, но при этом все же больше преимуществ у природного газа, который является доступным для строительства, имеет низкую себестоимость электроэнергии, создает меньше выбросов, чем уголь. Однако не все страны имеют доступ к обильному и дешевому природному газу. В некоторых случаях доступ к природному газу находится под угрозой из-за геополитической напряженности, как это было в случае с Восточной Европой и некоторыми странами Западной Европы.

Технологии возобновляемых источников энергии, такие как солнечные фотоэлектрические модули производят эмиссионное электричество. Однако для них, как правило, требуется много земли, результаты их эффективности являются неустойчивыми и зависят от погоды. Уголь, основной источник тепла, является самым проблемным. Он лидирует по выбросам CO 2 , требует много чистой воды для охлаждения теплоносителя и занимает большую площадь под строительство станции.

Новые технологии направлены на снижение ряда проблем, связанных с технологиями производства электроэнергии. Например, газовые турбины, объединенные с резервным аккумулятором, обеспечивают резерв на случай непредвиденных обстоятельств без сжигания топлива, а периодически возникающие проблемы в области возобновляемых ресурсов могут быть смягчены за счет создания доступного крупномасштабного хранилища энергии. Таким образом, сегодня нет ни одного безупречного способа преобразования тепловой энергии в электрическую, который мог бы обеспечить надежную и экономически эффективную электроэнергию с минимальным воздействием на окружающую среду.

Тепловые электростанции

На ТЭС пар высокого давления и температуры, полученный от нагрева воды при сжигании твердого топлива (главным образом угля), вращает турбину, подключенную к генератору. Таким образом он преобразует свою кинетическую энергию в электрическую. Рабочие компоненты тепловой электростанции:

  1. Котел с газовой топкой.
  2. Паровая турбина.
  3. Генератор.
  4. Конденсатор.
  5. Охлаждающие башни.
  6. Циркуляционный водяной насос.
  7. Насос подачи воды в котел.
  8. Принудительные вытяжные вентиляторы.
  9. Сепараторы.

Типовая схема представлена ниже.

Паровой котел служит для преобразования воды в пар. Этот процесс осуществляется путем нагрева воды в трубах с нагревом от сжигания топлива. Процессы горения непрерывно проводятся в камере сгорания топлива с подачей воздуха извне.

Паровая турбина передает энергию пара для вращения генератора. Пар с высоким давлением и температурой толкает лопатки турбины, установленных на валу, так, что он начинает вращаться. При этом параметры перегретого пара, поступающего в турбину, снижается до насыщенного состояния. Насыщенный пар попадает в конденсатор, а роторная мощность применяется для вращения генератора, вырабатывающего ток. Сегодня почти все паровые турбины представляют собой конденсаторный тип.

Конденсаторы - это устройства для преобразования пара в воду. Пар течет снаружи труб, а охлаждающая вода течет внутри труб. Такая конструкция называется поверхностным конденсатором. Скорость передачи тепла зависит от потока охлаждающей воды, площади поверхности труб и разности температур между водяным паром и охлаждающей водой. Процесс изменения водяного пара происходит при насыщенном давлении и температуре, в этом случае конденсатор находится под вакуумом, потому что температура охлаждающей воды равна внешней температуре, максимальная температура конденсата воды вблизи температуры наружного воздуха.

Генератор преобразует механическую энергию в состоит из статора и ротора. Статор состоит из корпуса, который содержит катушки, а магнитная полевая роторная станция состоит из сердечника, содержащего катушку.

По виду вырабатываемой энергии ТЭС делятся на конденсационные КЭС, которые производят электрическую энергию и теплоэлектроцентрали ТЭЦ, совместно выпускающие тепловую (пар и горячая вода) и электрическую энергию. Последние, имеют возможности преобразования тепловой энергии в электрическую с высоким КПД.

Атомные электростанции

АЭС используют тепло, выделяемое во время ядерного деления, для нагрева воды и производства пара. Пар используется для вращения больших турбин, которые генерируют электричество. При делении атомы расщепляются, образуя более мелкие атомы, высвобождая энергию. Процесс протекает внутри реактора. В его центре находится ядро, в котором содержится уран 235. Топливо для АЭС получают из урана, имеющего в своем составе изотоп 235U (0,7%) и неделящегося 238U (99,3 %).

Ядерный топливный цикл представляет собой серию промышленных этапов, связанных с производством электроэнергии из урана в ядерных энергетических реакторах. Уран - относительно распространенный элемент, который встречается во всем мире. Он добывается в ряде стран и обрабатывается до использования в качестве топлива.

Виды деятельности, связанные с производством электроэнергии, в совокупности относятся к ядерному топливному циклу по преобразованию тепловой энергии в электрическую на АЭС. Ядерный топливный цикл начинается с добычи урана и заканчивается удалением ядерных отходов. При переработке использованного топлива в качестве опции для ядерной энергии, его этапы образуют настоящий цикл.

Чтобы подготовить топливо для использования на АЭС, осуществляются процессы по добыче, переработке, конверсии, обогащению и выпуску твэлов. Топливный цикл:

  1. Выгорание урана 235.
  2. Шлакование - 235U и (239Pu, 241Pu) из 238U.
  3. В процессе распада 235U расход его уменьшается, а из 238U при выработке э/энергии получаются изотопы.

Себестоимость твэлов для ВВР примерно 20 % себестоимости вырабатываемого электричества.

После того как уран проведет около трех лет в реакторе, используемое топливо может пройти еще один процесс использования, включая временное хранение, переработку и рециркуляцию до удаления отходов. АЭС обеспечивает прямое преобразование тепловой энергии в электрическую. Тепло, выделяемое во время ядерного деления в активной зоне реактора, используется для превращения воды в пар, который вращает лопасти паровой турбины, приводя в действие генераторы, вырабатывающие электричество.

Пар охлаждается, превращаясь в воду в отдельной структуре на силовой установке, называемой градирней, которая использует воду из прудов, рек или океана для охлаждения чистой воды паросилового контура. Затем охлажденную воду повторно используют для получения пара.

Доля выработки электроэнергии на АЭС, по отношению к общему балансу выработки их разных видов ресурсов, в разрезе некоторых стран и в мире - на фото ниже.

Принцип работы газотурбинной электростанции аналогичен работе паротурбинной электростанции. Единственное различие заключается в том, что на паротурбинной электростанции для вращения турбины используется сжатый пар, а в газотурбинной силовой установке - газ.

Рассмотрим принцип преобразования тепловой энергии в электрическую в газотурбинной электростанции.

В воздух сжимают в компрессоре. Затем этот сжатый воздух проходит через камеру сгорания, где образуется газовоздушная смесь, повышается температура сжатого воздуха. Эта смесь с высокой температурой и высоким давлением проходит через газовую турбину. В турбине она резко расширяется, получая кинетическую энергию достаточную для вращения турбины.

В газотурбинной электростанции вал турбины, генератор переменного тока и воздушный компрессор являются общими. Механическая энергия, создаваемая в турбине, частично используется для сжатия воздуха. Газотурбинные электростанции часто используются в качестве резервного поставщика вспомогательной энергии на гидроэлектростанции. Он генерирует вспомогательную мощность во время запуска гидроэлектростанции.

Конструкция газотурбинной электростанции намного проще, чем паротурбинная электростанция. Размер газотурбинной электростанции меньше, чем у паротурбинной электростанции. На газотурбинной электростанции нет котельного компонента, и, следовательно, система менее сложная. Отсутствует пар, поэтому не требуются конденсатор и градирня.

Проектирование и строительство мощных газотурбинных электростанций намного проще и дешевле, капитальные затраты и эксплуатационные расходы в значительной степени меньше стоимости аналогичной паротурбинной электростанции.

Постоянные потери на газотурбинной электростанции значительно меньше по сравнению с паротурбинной электростанцией, поскольку в паровой турбине силовая установка котла должна работать непрерывно, даже когда система не подает нагрузку в сеть. Газотурбинная электростанция может быть запущена практически мгновенно.

Недостатки газотурбинной электростанции:

  1. Механическая энергия, создаваемая в турбине, также используется для запуска воздушного компрессора.
  2. Поскольку основная часть механической энергии, создаваемой в турбине, используется для управления воздушным компрессором, общая эффективность газотурбинной электростанции не такая высокая, как эквивалентная паротурбинная электростанция.
  3. Выхлопные газы в газотурбинной электростанции сильно отличаются от котла.
  4. До фактического запуска турбины воздух должен быть предварительно сжат, что требует дополнительного источника питания для запуска газотурбинной электростанции.
  5. Температура газа достаточно высока на газотурбинной электростанции. Это приводит к тому, что срок службы системы меньше, чем у эквивалентной паровой турбины.

Из-за более низкой эффективности газотурбинная электростанция не может использоваться для коммерческого производства электроэнергии, она обычно используется для подачи вспомогательной энергии на другие обычные электростанции, например, такие как гидроэлектростанция.

Термоэмиссионные преобразователи

Они также называются термоэлектронным генератором или термоэлектрическим двигателем, которые непосредственно преобразуют тепло в электричество, используя термоэмиссию. Тепловая энергия может быть преобразована в электроэнергию с очень высокой эффективностью через индуцированный температурой процесс электронного потока, известный как термоэлектронное излучение.

Основным принципом работы термоэлектронных преобразователей энергии является то, что электроны испаряются с поверхности нагретого катода в вакууме и затем конденсируются на более холодном аноде. После первой практической демонстрации в 1957 году термоэлектронные преобразователи энергии использовались с различными источниками тепла, но все они требуют работы при высоких температурах - выше 1500 К. В то время как работа термоэлектронных преобразователей энергии при относительно низкой температуре (700 К - 900 К) возможна, эффективность процесса, которая обычно составляет > 50%, значительно уменьшается, поскольку количество излучаемых электронов на единицу площади от катода зависит от температуры нагрева.

Для традиционных катодных материалов, таких как металлы и полупроводники, число испускаемых электронов пропорционально квадрату температуры катода. Однако недавнее исследование демонстрирует, что температура тепла может быть снижена на порядок при использовании графена в качестве горячего катода. Полученные данные показывают, что катодный термоэлектронный преобразователь на основе графена, работающий при 900 К, может достичь КПД 45%.

Принципиальная схема процесса электронной термоэлектронной эмиссии представлена на фото.

TIC на основе графена, где Tc и Ta - температура катода и температура анода, соответственно. Основываясь на новом механизме термоэлектронной эмиссии, исследователи предполагают, чтобы конвертер энергии катода на основе графена мог найти свое применение при повторном использовании тепла промышленных отходов, которое часто достигает температурного диапазона от 700 до 900 K.

Новая модель, представленная Ляном и Энгом, может принести пользу конструкции преобразователя энергии на основе графена. Твердотельные преобразователи энергии, которые в основном являются термоэлектрическими генераторами, обычно работают неэффективно в низкотемпературном диапазоне (с КПД менее 7%).

Утилизация отходов энергии стала популярной целью для исследователей и ученых, которые придумывают инновационные методы для достижения этой цели. Одним из наиболее перспективных направлений является термоэлектрические устройства на основе нанотехнологий, которые выглядят, как новый подход к экономии энергии. Прямое преобразование тепла в электричество или электричество в тепло известно, как термоэлектричество, основанное на эффекте Пельтье. Если быть точным, эффект называется именем двух физиков - Жана Пельтье и Томаса Зеебека.

Пельтье обнаружил, что ток, посылаемый в два разных электрических проводника, которые соединены на двух переходах, приведет к нагреву одного соединения, в то время как другое соединение охладится. Пельтье продолжил исследования, установил, что каплю воды можно заставить замерзнуть на стыке висмута-сурьмы (BiSb), просто изменив ток. Пельтье также обнаружил, что электрический ток может протекать, когда имеет место разность температур размещается поперек соединения разных проводников.

Термоэлектричество является чрезвычайно интересным источником электроэнергии из-за его способности преобразовывать тепловой поток непосредственно в электричество. Он представляет собой преобразователи энергии, которые легко масштабируются и не имеют движущихся частей или жидкого топлива, что делает их применимыми практически в любой ситуации, когда большое количество тепла, как правило, направляется в отходы, от одежды до крупных промышленных объектов.

Наноструктуры, используемые в материалах полупроводниковых термоэлементах, помогут поддерживать хорошую электропроводность и уменьшить теплопроводность. Таким образом, производительность термоэлектрических устройств может быть увеличена за счет использования материалов на основе нанотехнологий, с применением эффекта Пельтье. Они обладают улучшенными термоэлектрическими свойствами и хорошими поглощающими способность солнечной энергии.

Применение термоэлектричества:

  1. Поставщики энергии и датчики в диапазонах.
  2. Сжигающая масляная лампа, управляющая беспроводным приемником для удаленной связи.
  3. Нанесение небольших электронных устройств, таких как MP3-плееры, цифровые часы, чипы GPS/GSM и импульсные счетчики с теплотой тела.
  4. Быстро охлаждающие сиденья в роскошных автомобилях.
  5. Уборка отработанного тепла в автомобилях путем преобразования его в электричество.
  6. Преобразование отработанного тепла на заводах или промышленных объектах в дополнительную мощность.
  7. Солнечные термоэлектрики могут быть более эффективнее, чем фотоэлектрические элементы для выработки электроэнергии, особенно в районах с меньшим солнечным светом.

Магнитогидродинамический генератор мощности генерируют электроэнергию посредством взаимодействия движущейся жидкости (обычно ионизированный газ или плазма) и магнитного поля. С 1970 года в нескольких странах были проведены исследовательские программы МГД с особым акцентом на использование угля в качестве топлива.

Основополагающий принцип генерации MHD-технологий элегантен. Как правило, электропроводящий газ образуется при высоком давлении путем сжигания ископаемого топлива. Затем газ направляется через магнитное поле, в результате чего внутри него действует электродвижущая сила в соответствии с законом индукции Фарадея (названным в честь английского физика и химика XIX века Майкла Фарадея).

Система МГД представляет собой тепловой двигатель, включающий расширение газа от высокого до низкого давления так же, как и в обычном газовом турбогенераторе. В системе МГД кинетическая энергия газа преобразуется непосредственно в электрическую энергию, так как ей разрешено расширяться. Интерес к генерированию МГД был первоначально вызван открытием того, что взаимодействие плазмы с магнитным полем может происходить при гораздо более высоких температурах, чем это возможно во вращающейся механической турбине.

Предельные характеристики с точки зрения эффективности в тепловых двигателях были установлена в начале XIX века французским инженером Сади Карно. Выходная мощность МГД-генератора для каждого кубического метра его объема пропорциональна продукту газопроводности, квадрату скорости газа и квадрату силы магнитного поля, через который проходит газ. Для того, чтобы МГД-генераторы работали конкурентоспособно, с хорошей производительностью и разумными физическими размерами, электропроводность плазмы должна быть в диапазоне температур выше 1800 К (около 1500 С или 2800 F).

Выбор типа МГД-генератора зависит от используемого топлива и применения. Обилие запасов угля во многих странах мира способствуют развитию углеродных систем МГД для производства электроэнергии.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

Область техники

Изобретение относится к способам и устройствам для преобразования тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла.

Уровень техники

Из уровня техники известны средства и методы для преобразования тепловой энергии в электрическую (см. US 4381463 A, 26.04.1983; US 4454865 A, 19.06.1984), использующие для нагрева рабочего тела солнечную энергию. Принцип работы известных способов и устройств основан на конвекционной циркуляции электропроводящего рабочего тела и прохождении его через магнитогидродинамический генератор для получения электрической энергии. Недостатками известных способов и устройств являются: сложность реализации, экономическая неэффективность, неэкологичность, обусловленные использованием в качестве рабочего тела жидких металлов, в частности, ртути.

Известно устройство электростанции (см. JPS 62272860 A, 27.11.1987), использующее в качестве электропроводящей среды ионизированную жидкость, проходящую через магнитогидродинамический генератор. Недостатками известного устройства являются, в частности: сложность изготовления, низкая надежность, обусловленные работой устройства при больших давлениях.

Известно устройство преобразования солнечной энергии в электрическую (см. US 4191901 A, 04.03.1980), использующее в качестве рабочей среды органическую жидкость. Недостатками известного устройства, в частности, являются: сложность конструкции и низкая надежность, обусловленные необходимостью его работы при больших давлениях для обеспечения прохождения рабочей среды через магнитогидродинамический генератор.

В качестве наиболее близкого аналога приняты способ и устройство преобразования тепловой энергии, известные из RU 2013743 C1, 30.05.1994. Известный способ включает циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии. Известное устройство содержит жидкость в замкнутом контуре, включающем последовательно соединенные нагреватель-испаритель, конденсатор и преобразователь энергии. Конденсатор установлен выше относительно нагревателя-испарителя, а все элементы устройства соединены теплоизолированным трубопроводом. Недостатками известного устройства и способа, как и у вышеупомянутых средств и методов, являются: сложность реализации, низкая надежность, обусловленные необходимостью обеспечить усиленные герметичные соединения элементов для работы при больших давлениях.

Раскрытие изобретения

Задачей изобретения является разработка решения для преобразования тепловой энергии в электрическую, лишенного недостатков известных средств и методов данного назначения.

Техническим результатом предложенного изобретения является упрощение реализации способа, конструкции устройства, повышение надежности, долговечности, экологичности и экономичности, расширение области применения.

Технический результат достигается в способе преобразования тепловой энергии в электрическую, включающем циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии. При этом часть нагретой жидкости направляют непосредственно в устройство преобразования энергии, формируя конвекционный контур, в зону конденсации, совместно с парами, посредством аэролифта, транспортируют другую часть жидкости и используют жидкость из зоны конденсации для ускорения жидкости в конвекционном контуре, причем в зоне конденсации обеспечивают атмосферное давление.

Нагрев и испарение жидкости можно осуществлять при помощи солнечной энергии.

Технический результат достигается в устройстве преобразования тепловой энергии в электрическую, содержащем жидкость в замкнутом контуре, включающем последовательно соединенные, при помощи теплоизолированного трубопровода, нагреватель-испаритель, конденсатор и преобразователь энергии. При этом в нем сформирован дополнительный конвекционный контур для жидкости посредством дополнительной связи выхода нагревателя-испарителя с преобразователем энергии, между нагревателем-испарителем и конденсатором установлен аэролифт, а связь конденсатора с преобразователем энергии выполнена через конвекционный контур с возможностью ускорения потока жидкости по контуру, причем конденсатор выполнен с возможностью обеспечения в нем атмосферного давления.

В качестве преобразователя энергии может быть использован магнитогидродинамический генератор или турбина с генератором.

Жидкость может содержать в себе соль и/или антифриз и углеродные нанотрубки. А в качестве самой жидкости может быть использована вода.

Нагреватель-испаритель может быть выполнен с возможностью получения тепловой энергии от солнца. При этом в случае непрозрачной жидкости нагреватель-испаритель выполняется прозрачным, а в случае прозрачной жидкости нагреватель-испаритель выполняется непрозрачным. Нагреватель-испаритель может содержать теплообменные ребра. В прозрачном нагревателе-испарителе теплообменные ребра находятся внутри него, а в непрозрачном нагревателе-испарителе теплообменные ребра выполнены на нагреваемой его стороне и обращены внутрь. Теплообменные ребра выполнены из темного или черного пластика, или из черненой меди.

Краткое описание чертежей

Фиг.1 - схематичный вид устройства преобразования тепловой энергии в электрическую с использованием прозрачной жидкости.

Фиг.2 - схематичный вид устройства преобразования тепловой энергии в электрическую с использованием непрозрачной или полупрозрачной жидкости.

Осуществление изобретения

Предложенное изобретение предназначено для преобразования тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, как индивидуального бытового пользования, так и промышленного. В качестве источников тепла можно использовать топливные источники, радиоизотопные, атомные (тепло атомного реактора), солнечные, утилизационные, а также тепло из любых источников, выделяющих сбросное тепло (выхлопные, печные газы и др.). Предложенное решение может работать в системе, например, путем его объединения с устройствами отопления и горячего водоснабжения, работающими на солнечной энергии, такими как солнечные коллекторы.

Сущность предложенного способа состоит в обеспечении двухконтурной системы движения потоков жидкости, один из которых использует конвекцию в качестве движущий силы, а в другом применяется аэролифт с последующим использованием потенциальной энергии гравитационного поля для ускорения потока жидкости в конвекционном контуре. Вариант реализации предложенного способа приведен ниже в описании устройства, работающего на его основе.

Устройство для реализации способа преобразования тепловой энергии в электрическую (Фиг.1) содержит последовательно соединенные в замкнутый контур нагреватель-испаритель 1 с теплообменными ребрами 2, аэролифт 3, конденсатор 4, эжектор 5 и преобразователь энергии 6. Выход нагревателя-испарителя 1 дополнительно соединен с входом забора эжектируемой среды эжектора 5, сопло которого соединено с конденсатором 4. Соединения между элементами устройства выполняются при помощи теплоизолированных труб. Конденсатор 4 располагается выше относительно нагревателя 1, и в нем выполнен патрубок 7, служащий для выравнивания внутреннего давления паро-жидкостной среды с атмосферным и работы аэролифта 3. Через патрубок 7 возможно осуществлять долив жидкости, в случае ее испарения и понижения уровня, в остальное время он закрыт противопыльным фильтром или мембраной.

Все элементы устройства, за исключением преобразователя энергии 6, могут быть выполнены из пластика, такого как поликарбонат. Теплообменные ребра 2 могут быть выполнены как из темного или черного пластика, так и из черненой меди. Преобразователем энергии 6 может служить магнитогидродинамический генератор (МГД-генератор) или жидкостная турбина с генератором.

Жидкость 8 может содержать в себе соль и/или антифриз и углеродные нанотрубки, а в качестве самой жидкости может быть использована вода. Процентный состав компонентов жидкости выбирается из необходимых эксплутационно-технических и экономических требований. Так, например, добавление в жидкость антифриза позволяет работать устройству при пониженных температурах, добавление соли также влияет на понижение температуры замерзания жидкости и повышает ее электропроводность. Добавление в состав жидкости углеродных нанотрубок влияет на интенсивность теплообмена и электропроводность. Дополнительно в состав жидкости могут быть введены красители, влияющие на ее прозрачность для различных вариантов выполнения устройства, которые будут показаны ниже.

Один из вариантов выполнения устройства использует прозрачную жидкость (Фиг.1). Работает устройство преобразования тепловой энергии в электрическую следующим образом. Для примера, в качестве источника тепла используется солнечная энергия, которая может быть как прямой, так и отраженной с помощью рефлектора. При попадании тепловой (солнечной) энергии на нагреватель-испаритель 1, происходит нагрев жидкости 8, которая начинает конвекционное движение по контуру (конвекционный контур), включающему нагреватель-испаритель 1, эжектор 5, преобразователь энергии 6. Для улучшения теплообмена, повышения интенсивности нагрева и парообразования жидкости 8, при слабой облученности, возможно использование теплообменных ребер 2. При использовании прозрачной жидкости нагреватель-испаритель 1 выполняется непрозрачным, а теплообменные ребра 2 выполнены на его нагреваемой стороне и обращены внутрь. При повышении температуры жидкости 8 начинается процесс кипения и ее часть переходит в газообразное состояние (пар), образуя смесь жидкости и пара. За счет разницы между давлением пара и атмосферным давлением, обеспечиваемым патрубком 7 в конденсаторе 4, жидкость 8 начинает подниматься по аэролифту 3 в конденсатор 4. По мере накопления жидкости 8 в конденсаторе 4 она направляется в сопло эжектора 5. За счет разницы высот между конденсатором 4 и эжектором 5, жидкость 8 на выходе конденсатора 4 обладает потенциальной энергией, которая в эжекторе 5 переходит в кинетическую и передается потоку жидкости 8 в конвекционном контуре, ускоряя ее движение по контуру.

При использовании в качестве преобразователя энергии 6 МГД - генератора, электрическая энергия образуется за счет прохождения через него электропроводящей жидкости 8. В случае использования турбины с генератором происходит преобразование энергии потока жидкости 8 в механическую энергию вращения турбины и далее в электрическую. Полученная на преобразователе 6 электрическая энергия направляется потребителю.

Устройство может работать при слабом потоке тепла и при сильно отрицательных температурах, когда испарение жидкости 8 не представляется возможным. В данном случае преобразование энергии в устройстве происходит за счет работы конвекционного контура.

Второй вариант устройства, представленный на Фиг.2, работает по аналогии с первым вариантом. Отличием является применение прозрачного нагревателя-испарителя 1. Для поглощения в нем солнечной энергии используется непрозрачная или полупрозрачная жидкость 8. В случае использования полупрозрачной жидкости 8 возможна установка теплообменных ребер 2 внутри прозрачного нагревателя-испарителя 1, а в случае использования непрозрачной жидкости 8 необходимость в них полностью отпадает.

Предложенный способ и конструкция устройства для преобразования тепловой энергии в электрическую не требуют обеспечения герметичных швов и материалов, предназначенных для работы при больших давлениях, что позволяет упростить и удешевить реализацию способа и конструкцию устройства, повысить их надежность и долговечность при эксплуатации. Возможность использования различных преобразователей энергии и работа в широком температурном диапазоне расширяет область применения изобретения. Кроме того, за счет особенностей конструкции и принципа работы, устройство может изготавливаться из пластика и использовать экологически чистые жидкости, что повышает его экологичность и экономичность, в отличие от аналогичных устройств, использующих в качестве жидкости фреон, ртуть и т.д.

Таким образом, предложенное решение обеспечивает получение указанного выше, технического результата.

Следует отметить, что описание изобретения и чертежи приведены только в качестве примера и не ограничивают возможные модификации технического решения в рамках предложенной формулы.

1. Способ преобразования тепловой энергии в электрическую, включающий циклические нагрев и испарение жидкости, транспортирование ее паров, дальнейшую их конденсацию, в зоне, расположенной выше зоны испарения, и направление жидкости из зоны конденсации в устройство преобразования энергии, отличающийся тем, что часть нагретой жидкости направляют непосредственно в устройство преобразования энергии, формируя конвекционный контур, в зону конденсации, совместно с парами, посредством аэролифта, транспортируют другую часть жидкости и используют жидкость из зоны конденсации для ускорения жидкости в конвекционном контуре, причем в зоне конденсации обеспечивают атмосферное давление.

2. Способ по п.1, отличающийся тем, что в качестве преобразователя энергии используют магнитогидродинамический генератор или турбину с генератором.

3. Способ по п.1, отличающийся тем, что жидкость содержит в себе соль и/или антифриз и углеродные нанотрубки.

4. Способ по п.1, отличающийся тем, что в качестве жидкости используется вода.

5. Способ по п.1, отличающийся тем, что нагрев и испарение жидкости осуществляют при помощи солнечной энергии.

6. Устройство преобразования тепловой энергии в электрическую, содержащее жидкость в замкнутом контуре, включающем последовательно соединенные, при помощи теплоизолированного трубопровода, нагреватель-испаритель, конденсатор и преобразователь энергии, отличающееся тем, что в нем сформирован дополнительный конвекционный контур для жидкости посредством дополнительной связи выхода нагревателя-испарителя с преобразователем энергии, между нагревателем-испарителем и конденсатором установлен аэролифт, а связь конденсатора с преобразователем энергии выполнена через конвекционный контур с возможностью ускорения потока жидкости по контуру, причем конденсатор выполнен с возможностью обеспечения в нем атмосферного давления.

7. Устройство по п.6, отличающееся тем, что в качестве преобразователя энергии используется магнитогидродинамический генератор или турбина с генератором.

8. Устройство по п.6, отличающееся тем, что жидкость содержит в себе соль и/или антифриз и углеродные нанотрубки.

9. Устройство по п.6, отличающееся тем, что в качестве жидкости используется вода.

10. Устройство по п.6, отличающееся тем, что нагреватель-испаритель выполнен с возможностью получения тепловой энергии от солнца.

11. Устройство по п.10, отличающееся тем, что в случае непрозрачной жидкости нагреватель-испаритель выполняется прозрачным, а в случае прозрачной жидкости нагреватель-испаритель выполняется непрозрачным.

12. Устройство по п.11, отличающееся тем, что нагреватель-испаритель содержит теплообменные ребра.

13. Устройство по п.12, отличающееся тем, что в прозрачном нагревателе-испарителе теплообменные ребра находятся внутри него, а в непрозрачном нагревателе-испарителе теплообменные ребра выполнены на нагреваемой его стороне и обращены внутрь.

14. Устройство по п.12, отличающееся тем, что теплообменные ребра выполнены из темного или черного пластика, или из черненой меди.

Похожие патенты:

Вертикальный ветровой электрогенератор содержит опорную колонну (1), по крайней мере один генераторный блок (2), по крайней мере две лопасти (3), устройство контроля возбуждения, выпрямительное устройство, реверсивный частотный преобразователь, фланцы, опоры, систему охлаждения, подъемный механизм (80) и подъемную систему.

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения электрических машин, в частности - к синхронным электрическим машинам с возбуждением от постоянных магнитов, которые наряду с известными достоинствами обладают и некоторыми недостатками, в частности - довольно сложными пусковыми и регулировочными характеристиками и относительно низким КПД.

Изобретение относится к электротехнике и энергетике, а более конкретно к "малой" энергетике - автономным источникам питания на базе силовых агрегатов небольшой мощности, способных работать в полевых условиях в автоматическом режиме не менее 1 - 2 лет.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения и качественного воздухообмена в зданиях содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным воздухопроводом, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, а теплообменный воздухопровод снабжен всасывающим фильтром, который установлен в помещении и выполнен в виде узла очистки внутреннего воздуха, состоит из диффузора с винтообразными продольно размещенными канавками, входящими в круговую канавку, соединенную со сборником загрязнений, в котором размещено осушивающее устройство в виде емкости с адсорбирующим веществом.

Изобретение относится к способу производства электроэнергии из биотоплива и солнечной энергии. Заявляется система производства электроэнергии из солнечной энергии с использованием котла на биотопливе (6) в качестве дополнительного источника теплоты, которая включает концентрирующий солнечный коллектор, котел на биотопливе (6), турбогенератор, при этом в концентрирующем солнечном коллекторе в качестве рабочего тела используется вода и применяются трубки солнечного коллектора (13) среднего давления, скомбинированные в последовательно-параллельную матрицу, выход концентрирующего солнечного коллектора соединен с основанием барабана (6а) котла на биотопливе (6) через второй клапан управления (22), а выход пара из барабана котла на биотопливе (6а) соединен с цилиндром (3) турбогенератора (1).

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, «холодным» каналом - с помещением, а «горячим» - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к «холодному» каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, отличающаяся тем, что грунтовой воздухопровод выполнен из композиционного материала, который включает металлическое основание, теплоизоляционный и теплоаккумулирующий тонковолокнистый базальт и гидроизоляцию, причем тонковолокнистый базальт продольно расположен в растянутом положении по длине грунтового воздухопровода и закреплен в виде слоя между металлическим основанием и гидроизоляцией.

Изобретение предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения содержит южный, выполненный из поглощающего солнечную радиацию материала, и северный воздухопроводы, расположенные на соответствующих сторонах здания, тепловой аккумулятор, образующий с полом здания подпольный воздухопровод, сообщенный с южным, а также расположенные под тепловым аккумулятором один над другим теплообменный и грунтовый воздухопроводы, первый из которых сообщен с северным, а второй снабжен грунтовыми теплопроводящими трубами, при этом система снабжена размещенной в тепловом аккумуляторе вихревой трубой, входом сообщенной с подпольным воздухопроводом, холодным каналом - с помещением, а горячим - через тепловой аккумулятор с грунтовым воздухопроводом, выходы подпольного и грунтового воздухопроводов подсоединены к холодному каналу вихревой трубы, а за местом их подсоединения установлен фильтр, при этом южный и северный воздухопроводы сообщены с атмосферой, а теплообменный - с помещением, при этом система снабжена термоэлектрическим генератором, выполненным в виде корпуса и комплекта дифференциальных термопар, причем в корпусе расположен проходной канал для горячего теплоносителя и проходной канал для холодного теплоносителя, кроме того, входной патрубок проходного канала для горячего теплоносителя соединен каналом горячего потока вихревой трубы, а выходным своим патрубком - с грунтовым воздухопроводом, при этом входной патрубок проходного канала для холодного теплоносителя соединен с каналом холодного потока вихревой трубы, выходным своим патрубком - с помещением.

Изобретение относится к теплотехнике, в частности к устройствам для опреснения соленой воды с использованием солнечной и ветровой энергий. Солнечно-ветровой опреснитель содержит емкость для опреснения воды, установленный над ней прозрачный конденсатор с патрубком для выхода паровоздушной смеси в верхней части с установленной в нем крылаткой, закрепленной на валу ветродвигателя.

Изобретение относится к области гелиотехники и предназначено для энергоснабжения объектов сельскохозяйственного и индивидуального назначения. Фотоэлектрическая тепловая система содержит, по меньшей мере, один солнечный тепловой коллектор, трубопровод подачи жидкости в солнечный тепловой коллектор, трубопровод отвода жидкости из солнечного теплового коллектора в бак-аккумулятор (термос), при этом трубопровод подачи жидкости в солнечный тепловой коллектор соединен, по меньшей мере, с одним фотоэлектрическим тепловым модулем, расположенным уровнем ниже солнечного теплового коллектора и соединенным последовательно с ним, при этом подача жидкости в фотоэлектрический тепловой модуль осуществляется через трубопровод из напорного бака, установленного выше уровня солнечного теплового коллектора, по меньшей мере, в один из трубопроводов вмонтирован соленоидный клапан, имеется, по меньшей мере, одно термореле с индивидуальным для фотоэлектрического теплового модуля или солнечного теплового коллектора датчиком, причем управляющие контакты соленоидного клапана подключены и коммутируются с помощью термореле, при этом солнечный тепловой коллектор и фотоэлектрический тепловой модуль выполнены в виде приемников солнечного излучения, представляющих собой резервуары, которые имеют форму прямоугольного параллелепипеда, а на рабочей поверхности резервуара фотоэлектрического теплового модуля расположена батарея солнечных элементов, внутри резервуаров фотоэлектрического теплового модуля и солнечного теплового коллектора параллельно рабочей поверхности с зазором относительно ее расположена перегородка, не достигающая верхней и нижней стенки резервуара.

Многофункциональная солнечноэнергетическая установка (далее МСЭУ) относится к возобновляемым источникам энергии, в частности к использованию солнечного излучения для получения электрической энергии, обеспечения горячего водоснабжения и естественного освещения помещений различного назначения, содержащая оптически активный прозрачный купол, представляющий собой двояковыпуклую прямоугольную линзу, фотоэлектрическую панель, солнечный коллектор, круглые плоские горизонтальные заслонки полых световодов, полые световодные трубы, теплоприемную медную пластину солнечного коллектора, рассеиватель солнечного света, микродвигатели круглых плоских горизонтальных заслонок полых световодных труб, круговые светодиодные лампы, аккумуляторные батареи, датчики света и температуры, электронный блок управления, пульт управления, бак-аккумулятор, теплообменник, насос, обратный клапан, шестигранные медные трубопроводы, инвертор и опору с опорными стойками для поддержания конструкции МСЭУ.

Изобретение относится к преобразованию тепловой энергии в электрическую и может применяться в качестве автономного источника электрической энергии, используя для нагрева, например, солнечную тепловую энергию или любой другой источник тепла. Устройство для реализации способа содержит нагреватель-испаритель 1 с теплообменными ребрами 2, аэролифт 3, конденсатор 4, эжектор 5, преобразователь энергии 6, патрубок 7. Внутри устройства циркулирует жидкость 8. Технический результат состоит в упрощении реализации способа, конструкции, повышении надежности, долговечности, экологичности и экономичности, расширении области применения. 2 н. и 12 з.п. ф-лы, 2 ил.