Проектирование и строительство домов

Проектирование и строительство домов

» » Изготовление схемы импульсного топливного насоса. Топливный импульсный дозирующий насос

Изготовление схемы импульсного топливного насоса. Топливный импульсный дозирующий насос

C сентября 2011 года ООО Фирма "КРОСС-М" начала выпуск импульсных топливных насосов модели КМ01 проточного типа с электромагнитным клапаном напряжением 24 вольта с полугерметичным контактом для жидкостных предпусковых подогревателей ШААЗ (г. Шадринск), Теплостар и воздушных отопителей "Планар" с подачей топлива от 0,4 до 2,5 литров в час. Насосы КМ01 являются аналогом насосов модели 10ТС.451.02, выпускаемых самарским предприятием ООО "Адверс". По индивидуальному заказу насосы могут быть отрегулированы на нужный потребителю расход топлива. Вес насоса - 370 граммов. Гарантийный срок эксплуатации изделия - 12 месяцев. Безотказный ресурс при правильной эксплуатации не менее 20 млн. циклов. Насосы прошли успешные испытания при температуре -55°С.

ТОПЛИВНЫЙ НАСОС МОДЕЛИ КМ02

В марте 2012 года ООО Фирма «КРОСС-М» начала выпуск импульсных топливных насосов модели КМ02 проточного типа с электромагнитным клапаном напряжением 12 вольт с полугерметичным контактом для предпусковых жидкостных подогревателей.

Производительность насосов КМ02 аналогична производительности насосов КМ01: от 0,4 до 2,5 литров в час. Отличительной внешней особенностью насосов КМ02 является этикетка зеленого цвета, что указывает на напряжение 12 вольт. По индивидуальному заказу насосы могут быть отрегулированы на нужный потребителю расход топлива. Вес насоса - 370 граммов. Гарантийный срок эксплуатации - 12 месяцев. Безотказный ресурс при правильной эксплуатации не менее 20 млн. циклов. Насосы прошли успешные испытания при температуре -55°С.

ТОПЛИВНЫЕ НАСОСЫ КМ07W, КМ08W и KM15W

ООО Фирма «КРОСС-М» начала выпуск топливных импульсных насосов моделей КМ07W и КМ08W для подогревателей Webasto (Вебасто), Прамотроник, аналог насоса DP30 и DP42. Насосы выпускаются напряжением 12 и 24 вольта с полугерметичным контактом. Отличительной особенностью насосов является этикетка темно-красного цвета с буквой W после указания модели насоса, первой буквой от написания компании Webasto. Электроразъем насосов КМ07W и КМ08W соответствует разъему немецких насосов, поэтому их можно без всякой переделки подсоединить к электросхеме немецких подогревателей. Вес насоса – 370 граммов. Гарантийный срок эксплуатации изделий – 12 месяцев. Безотказный ресурс при правильной эксплуатации не менее 20 млн. циклов. Насосы прошли успешные испытания при температуре -55°С.

Образцы этикеток насосов КМ07W и КМ08W:

ООО Фирма «КРОСС-М» начала выпуск топливных импульсных насосов для подогревателей и отопителей Eberspacher (Эбершпехер) с подачей топлива (бензин/диз.топливо) от 0,3 до 1,2 литров в час. Насосы выпускаются напряжением 12 и 24 вольта с полугерметичным контактом. Отличительной особенностью насосов является этикетка золотистого цвета с буквой Е после написания модели насоса, первой буквой от написания компании Eberspacher. Выходной штуцер насосов выполнен диаметром 5мм и точно соответствует немецким моделям. Электроразъем насосов соответствует разъему немецких насосов, поэтому их можно без всякой переделки подсоединить к электросхеме немецких подогревателей/отопителей. Вес одного насоса – 310 и 370 граммов. Гарантийный срок эксплуатации изделий – 12 месяцев. Безотказный ресурс при правильной эксплуатации не менее 20 млн. циклов. Насосы прошли успешные испытания при температуре -55°С.

Образцы этикеток насосов:

Топливный фильтр - 55 руб.


Всасывающий штуцер с полиуретановой прокладкой для насосов Eberspacher - 155 руб.


Колодка соединительная - 70 руб.


Цены указаны с НДС

УПАКОВКА И ДОСТАВКА

При упаковке насосы помещаются в индивидуальный гриппер пакет и картонную коробку, после чего складываются по 20 штук в большую картонную коробку. Такая двойная упаковка является дополнительной гарантией защиты насосов от механических повреждений во время их перемещения и транспортировки к месту назначения.






Доставка продукции к месту назначения осуществляется как самовывозом, так и с помощью удобной для клиента транспортной компанией. Мы отправляем продукцию такими транспортными компаниями как: «АВТОТРЕЙДИНГ», «ДЕЛОВЫЕ ЛИНИИ», «БАЙКАЛ СЕРВИС», «ПЭК», «КИТ», «ЖелДорЭкспедиция», которые необходимо указать при направлении заявки на продукцию.

(51)4 Е 04 Г 1/ ГОСУДАРСТВЕННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР РЕТЕН ВИДЕТЕЛЬСТВУ 2 размещени подсоедиубопроводключен ктвом трубоающе пер Посред емкост тельство СССР 1/02, 1980,Ссоо ныи кла д а ти камер остью 4. оляет повыси о насоса путе ания жидкости ол1 ена п. А-лы,рожнения всас К АВТОРСНО(57) Изобретение попроизв-сть импульснобеспечения перекачв процессе цикла оп патрубка (П) 2, П чиваемой жидкости нен к рабочеи камере 1 3 подвода сжатого газа верхней части П 2, провода 5 приемная с нижней частью П 2. В 6 установлен в верхней 1, к-рая размещена над Ось трубопровода 3 рас касательной к оси П 2.Изобретение относится к насосостроению, касается импульсных насосов и может быть использовано для перекачивания различных жидкостей.Цель изобретения - повышение производительности путем обеспечения перекачивания жидкости в процессе цикла опорожнения всасывающего патрубка. 10На Лиг. 1 изображена схема насоса, исходное положение, на Лиг. 2 - то же, фаза опорожнения всасывающего патрубка; на Лиг, 3 - то же, Лаза заполнения камеры жидкостью. 15 Импульсный насос содержит рабочую камеру 1 с подсоединенным к ней всасывающим патрубком 2, размещенным в перекачиваемой жидкости, и трубопро вод 8 подвода сжатого газа, подключенный к верхней части всасывающего патрубка 2, Насос снабжен также приемной емкостью 4, трубопроводом 5, посредством которого последняя сооб щена с нижней частью всасывающего патрубка 2 и воздушным клапаном 6, установленным в верхней части камеры 1, которая размещена над емкостью 4. Ось трубопровода 3 подачи сжатого 30 газа расположена по касательной к оси всасывающего патрубка 2.Насос работает следующим образом. В исходном положении (фиг.1) камера 1 и емкость 4 не заполнены, всасывающий патрубок 2 и трубопровод 5 заполнены перекачиваемой жидкостью до ее исходного уровня. При подаче газа в трубопровод 3 (фиг.2) патрубок 2 опорожняется, а жидкость из трубопровода 5 переливается в приемную емкость 4. В процессе дальнейшей подачи газа в трубопровод 3 при определенном его уровне открывается клапан 6 (Лиг.3), давление в камере 1 резко падает до атмосферного, и жидкость по патрубку 2 под действием гидростатического давления и инерционных сил поступает в камеру 1 и емкость 4, Из емкости 4 жидкость поступает потребителю, Цикл работы повторяется.формула изобретения1. Импульсный насос, содержащийрабочую камеру с подсоединенным к нейвсасывающим патрубком, размещенным вперекачиваемой жидкости, и трубопроводподвода сжатого газа, подключенный кверхней части всасывающего патрубка,о т л и ч а ю щ и й с я тем, что,с целью повышения производительностипутем обеспечения перекачивания жидкости в процессе цикла опорожнениявсасывающего патрубка, насос снабженприемной емкостью, трубопроводом,посредством которого последняя сообщена с нижней частью всасывающегопатрубка, и воздушным клапаном, установленным в верхней части камеры, которая размещена над емкостью.2. Насос по п.1, о т л и ч а ю -щ и й с я тем, что ось трубопроводаподачи сжатого газа расположена покасательной к оси всасывающего патрубка,1479708Составитель А.Кулигиндактор М,Келемеш Техред Л.Сердюкова Корректор Э.Лончак Заказ 2522/35 Тираж 523. Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР113035, Москва, Ж, Раушская наб., д. 4/5изводственно-издательский комбинат "Патент", г,ужгород, ул. Гагарина, 1

Заявка

4198499, 24.02.1987

ЕРОХИН СЕРГЕЙ КОНСТАНТИНОВИЧ

МПК / Метки

Код ссылки

Импульсный насос

Похожие патенты

Надежности,Поставленная цель достигается тем, чтов устройстве для удаления воздуха из сифонного всасывающего патрубка лопастного насоса, содержащем эжектор с пусковымустройством, активное сопло которого подсоединено к нагнетательному патрубку насоса, а пассивное - к воздухосборнику,последний выполнен в виде емкости, снабженной датчиками верхнего и нижнего уровней, подключенными к пусковому устройству эжектора, и подсоединенной в нижнейчасти к верхней зоне сифона.На чертеже схематично изображено пред.лагаемое устройство, вид сбоку. 2Устройство для удаления воздуха из сифонного всасывающего патрубка 1 лопастного насоса 2 содержит эжектор 3 с пусковым устройством (не показано), активное сопло 4 которого подсоединено к нагнетательному...

Чтобы средство 3 для направления газожидкостной смеси в виде газосборной воронки перекрывало сечение колонны обсадных труб 6. 45 Газожидкостная смесь, поступающая из пласта, проходит через средство 3 в виде воронки и далее по сепарационному элементу 1. Скорость газожидкостной смеси в сепарационном элементе 1 обусловлена не столько движением жидкости при всасывающем ходе насоса, сколько всплыванием газа в объеме газового фактора, стесненного сечением сепарационного элемента 1. Таким образом, скорость газожидкостной смеси в сепарационном элементе 1 при данном давлении на входе в выходит в затрубное пространствоскважины над средством 3 и всасывается насосом через нижний конец трубы4. Благодаря большим радиусу витковэлемента 1 и скорости...

Виде шнека 8, полая ось 9 которого имеет радиальные перфорационные отверстия 10 для прохода газожидкостной смеси, а струйный аппарат размещен на входе газоотводной 6 трубки, причем полость 40 оси 9 шнека сообщена с всасывающей полостью 11 струйного аппарата. Кроме того, устройство содержит фильтр 12.Устройство работает следующим образом. 45После запуска ПЭЦН 4 газожидкостная смесь, поступая через отверстия фильтра 12 в корпус 5, совершает винтовое движение, направляемое поверхностью шнека 8. Под действием центробежной силы частицы жидкости перемещаются к стенке корпуса 5 и поступают на прием ПЭЦН 4, а пузырьки газачерез перфорационные отверстия 10попадают во внутреннюю полость оси 955шнека 8 и далее - во всасывающую полость 11 струйного...

Все большую популярность в системах автоматики как домашнего, так и промышленного применения находят насосы-дозаторы. Такие насосы широко начинают применяться и в системах подачи топлива, и в системах капельного орошения и для подачи в резервуары определенных доз необходимых реагентов. Однако, промышленные изделия, зачастую импортного происхождения и характеризуются высокой стоимостью. Попытаемся предложить решение, которое превратит обычный насос в насос – дозатор.

В случае применения двигателя постоянного тока в качестве привода насоса – дозатора, управление.производительностью насоса можно осуществлять изменением напряжения питания. Однако, для того чтобы, скажем, снизить производительность насоса, уменьшать напряжение до низких значения небезопасно, т.к. двигатель может выйти из зоны устойчивого управления. Выходом в такой ситуации может быть – обеспечение импульсного режима питания насоса.. С каждым импульсом, двигатель как бы начинает работать заново, преодолевая, связанные со стартовыми режимами, моменты сопротивления (сухое трение, набор оборотов и т.д.). .

Достаточно просто импульсный режим питания реализуется на микросхемах стандартной логики. В данной схеме, для задания импульсного режима питания, применен генератор с изменяемой длительностью паузы между импульсами подачи питания. В самом деле, ведь импульс питания не должен уменьшаться до нуля, с тем, чтобы гарантировать время работы в импульсе минимально необходимое для устойчивой работы. Время рабочего цикла насоса задается с помощью резистора R2. Время паузы – резисторами R1 и R3

Диод VD3 служит для рекуперации тока, вызванного ЭДС самоиндукции обмотки двигателя по перерыва подачи питания через обмотку двигателя. Его назначение здесь не отличается от диодов, подключаемых параллельно обмоткам реле постоянного тока для устранения выбросов напряжения. Транзисторный ключ VT2 в состоянии обеспечить коммутацию нагрузки с током потребления до 9 А. Фото рабочего макета устройства:

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U Вентиль

CD4093B

1 В блокнот
VT1 Биполярный транзистор

BC547C

1 В блокнот
VT2 MOSFET-транзистор

IRF630A

1 В блокнот
VD1-VD2 Выпрямительный диод

1N4148

2 В блокнот
VD3 Выпрямительный диод

1N4007

1 В блокнот
LD1 Светодиод

АЛ307А

1 В блокнот
VD4 Стабилитрон

КС210Б

1 В блокнот
R1 Переменный резистор 100 кОм 1 СПО В блокнот
R2 Резистор

36 кОм

1 В блокнот
R3 Резистор

110 кОм

1 В блокнот
R4 Резистор

200 Ом

1 В блокнот
R5 Резистор

11 кОм

1 В блокнот
R6 Резистор

Полезная модель относится к области производства импульсных насосов, подающих топливо из бака транспортного средства в предпусковой подогреватель двигателя или отопитель кабины и салона автомобиля или автобуса. Техническим результатом предлагаемой полезной модели является создание импульсного дозирующего насоса, более простого по конструкции и менее материалоемкого. Указанный технический результат достигается тем, что в предлагаемом импульсном дозирующем насосе, состоящим из электрического разъема, смонтированного на корпусе насоса, в котором размещена электрическая катушка с дозирующим устройством, всасывающего и нагнетающего штуцеров. Электрический разъем выполнен в виде пластикового корпуса. Электрические контакты расположены в одну линию и залиты изолирующим материалом. Корпус разъема выполнен также из изолирующего материала и присоединен к пластмассовому корпусу электрической катушки крепежным элементом, проходящим между токопроводящими пластинами контактов. Пластины электрических контактов в районе прохождения крепежного элемента имеют на длинных сторонах выемки, выполненные в виде части окружности. Металлический корпус насоса выполнен цилиндрическим из трубной заготовки и торцевых заглушек, соединенных с цилиндром корпуса насоса методом сварки или запрессовки с последующей развальцовкой.

Полезная модель относится к области производства импульсных насосов, подающих топливо из бака транспортного средства в предпусковой подогреватель двигателя или отопитель кабины и салона автомобиля или автобуса.

Импульсные дозирующие насосы различных типов широко известны. Их производство осуществляют такие фирмы как «Thomas Magnete» (Германия), «Webasto» (Германия), «Eeerspacher» (Германия), ООО «Адверс» Россия, ОАО «ШААЗ» Россия.

Среди аналогов заявляемой полезной модели можно назвать, к примеру, дозирующий насос, защищенный патентом РФ 2022169 МПК F04B 13/00. Однако в качестве привода указанной модели выбран пневмоцилиндр, что совсем неудобно для такого транспортного средства, как автомобиль, где приводом для дозирующего устройства можно использовать электрический аккумулятор. К тому же в конструкции данного насоса имеются сложные узлы, содержащие конечные выключатели и храповой механизм, что усложняет всю конструкцию устройства и не позволяет устройству работать с большой частотой циклов всасывания и нагнетания, что необходимо для равномерной подачи топлива в предпусковой подогреватель или отопитель кабины.

Ближайшим аналогом заявляемой полезной модели, выбранным в качестве прототипа, в части конструкции корпуса насоса и электрического разъема является конструкция импульсного дозирующего насоса ТН7-4 мл-12 В компании ООО «Адверс» (г. Самара), корпуса электрических разъемов которого выполнены заодно с пластиковой втулкой, которая крепится к корпусу насоса специальным цанговым защелкивающимся разъемом.

Ввиду отсутствия детальных изображений корпуса и электрического разъема прототипа в источниках открытой публикации, в том числе и патентной информации, информация о прототипе представлена в виде фотографий, в том числе, и разрезов, насоса ТН7-4 мл-12 В, что соответствует п. 22.2(2) Административного регламента по организации приема заявок на полезную модель и их рассмотрения, экспертизы и выдачи в установленном порядке патентов Российской Федерации на полезную модель, утвержденного Минобрнауки РФ от 29 октября 2008 г. 326. Данный насос, как видно на фото 1, 3 выпускается, как минимум с 2011 г.

На фото 1 показан вид насоса сбоку, где виден корпус электрических разъемов, выполненный как одно целое с пластиковой втулкой, которая крепится к верхнему торцу металлического корпуса насоса. На фото 2 вид насоса сверху, где также видно выполнение корпуса электрических разъемов заодно с втулкой, а так же видны контакты разъема. На фото 3 видна форма электрических контактов при снятой пластиковой втулке с корпусом электрических разъемов. Кроме того виден металлический корпус насоса, верхний сферообразный торец которого выполнен вместе с цилиндрической частью корпуса и который изготавливается методом выдавливания из листовой стали с применением дорогостоящего прессового оборудования.

Недостатком известного насоса является сложность изготовления элементов, составляющих насос, а именно, корпуса электрических разъемов объединенных с пластиковой втулкой и металлического корпуса самого насоса. Кроме этого, недостатком также является большая материалоемкость пластиковой втулки с разъемом. Эти недостатки в условиях опытно-мелкосерийного и серийного производства приводят к удорожанию всего насоса.

Задачей заявляемой полезной модели является оптимизация производства насосов.

Техническим результатом предлагаемой полезной модели является создание импульсного дозирующего насоса, более простого по конструкции и менее материалоемкого.

Указанный технический результат достигается тем, что в предлагаемом импульсном дозирующем насосе, состоящим из электрического разъема, смонтированного на корпусе насоса, в котором размещена электрическая катушка с дозирующим устройством, всасывающего и нагнетающего штуцеров. Электрический разъем выполнен в виде пластикового корпуса. Электрические контакты расположены в одну линию и залиты изолирующим материалом. Корпус разъема выполнен также из изолирующего материала и присоединен к пластмассовому корпусу электрической катушки крепежным элементом, проходящим между токопроводящими пластинами контактов. Пластины электрических контактов в районе прохождения крепежного элемента имеют на длинных сторонах выемки, выполненные в виде части окружности. Металлический корпус насоса выполнен цилиндрическим из трубной заготовки и торцевых заглушек, соединенных с цилиндром корпуса насоса методом сварки или запрессовки с последующей развальцовкой.

На фиг.1 представлен продольный разрез импульсного дозирующего насоса, на фиг.2 - вид А на электрический разъем в разрезе.

Топливный импульсный дозирующий насос состоит из корпуса насоса 1, в котором размещена электрическая катушка 2, закрытая верхней 3 и нижней 4 торцевыми заглушками. Внутри катушки 2 расположено дозирующее устройство 5, которое в процессе работы насоса подает топливо из нижнего всасывающего штуцера 6 в верхний нагнетательный штуцер 7. Корпус 8 электрического разъема закреплен на электрической катушке 2 посредством крепежного элемента 9. Пластины 10 электрических контактов имеют на длинных обращенных друг к другу сторонах выемки 11, выполненные в виде части окружности.

Цилиндрический корпус 1 насоса выполнен из трубной заготовки, закрытой верхней 3 и нижней 4 торцевыми заглушками, например, сварными соединениями 12.

Работает заявляемый топливный импульсный дозирующий насос следующим образом. При подаче напряжения на контакты 10 в электрической катушке возникает магнитное поле, с помощью которого дозирующее устройство 5 перемещается и своим торцем толкает жидкость (дизельное топливо или бензин) в направлении верхнего нагнетательного штуцера 7. При прекращении подачи напряжения на контакты 10 магнитное поле исчезает, а возвратная пружина перемещает дозирующее устройство в первоначальное положение. При этом происходит поступление жидкости через всасывающий нижний штуцер в дозирующее устройство. При следующей подаче напряжения на контакты цикл нагнетания и всасывания топлива повторяется.

Заявляемый насос собирается следующим образом.

К предварительно собранному корпусу 1 насоса с размещенной в нем электрической катушкой 2 с дозирующим устройством 5, с всасывающим 6 и нагнетательным 7 штуцерами надевается корпус 8 разъема и крепежным элементом 9, например, саморезом крепится к катушке 2 насоса, точнее к приливу 2 1 ее пластмассового корпуса. Разборка при необходимости начинается с этой же операции в обратном порядке. При максимальной простоте конструкции предлагаемого насоса функциональные и качественные показатели аналогичны известным отечественным и зарубежным конструкциям.

Предлагаемый импульсный дозирующий насос по сравнению с ближайшими аналогами менее материалоемок по пластмассе, более прост технологически в условиях мобильного опытного, мелкосерийного и серийного производства, в том числе и при изготовлении корпуса насоса без применения дорогостоящего прессового оборудования Прост при сборке или замене, например, пластмассового корпуса разъема, т.е. более ремонтопригоден при эксплуатации, что удешевляет сам ремонт для потребителя.

Топливный импульсный дозирующий насос, содержащий корпус насоса, в котором размещена электрическая катушка с дозирующим устройством, всасывающий и нагнетательный штуцера и электрический разъем с расположенными внутри электрическими контактами, отличающийся тем, что корпус насоса выполнен из трубной заготовки с торцевыми заглушками, а корпус электрического разъема соединен с приливом пластмассового корпуса электрической катушки крепежным элементом, причем электрические контакты выполнены в виде токопроводящих пластин, имеющих в районе прохождения крепежного элемента, на длинных сторонах выемки, выполненные в виде части окружности.

Импульсные насосы-дозаторы называются так из-за нюансов своего принципа действия: одну из ключевых ролей в работе таких насосов играют короткие электрические импульсы, подаваемые к приводу насоса.

Импульсивный характер

На нашем сайте представлены импульсные насосы-дозаторы мембранного (диафрагменного) типа, называемые также соленоидными насосами. Принцип их работы заключается в следующем: мембрана, изгибаясь в ту или иную сторону, увеличивает или уменьшает объём рабочей камеры насоса. Соответственно, в камере попеременно возникает пониженное или повышенное давление, жидкость засасывается в камеру или выталкивается из неё.

Пульсация мембраны определяется возвратно-поступательными движениями толкателя, который свободно перемещается внутри катушки соленоида. При подаче электрического импульса на выводы катушки в ней возникает магнитное поле, которое направляет толкатель в сторону мембраны – отрабатывается "выбрасывающее" действие насоса. После окончания импульса магнитное поле исчезает; обратный ход толкателя обеспечивается пружинным элементом механизма насоса – происходит заполнение рабочей камеры.

Скрупулёзность

Точность дозирования определяют несколько факторов:

  • размер рабочей камеры;
  • величина, на которую изгибается мембрана;
  • количество пульсаций мембраны (тактов насоса), произведенных за время дозирования.

Последний параметр – количество тактов – совпадает с количеством импульсов, подаваемых на катушку индуктивности. В технических руководствах к соленоидным насосам обычно указывается так называемый "объём импульса" в миллилитрах. Зная объём отдельного импульса и частоту их подачи, можно легко рассчитать время дозирования.

К примеру, при объёме импульса в 0,14 мл и частоте в 120 импульсов в минуту (насосы серии PKX , тип 01-05) для дозирования 420 миллилитров потребуется

420 мл / (0,14 мл/имп*120 имп/мин) = 25 минут.

Однако, объём импульса может быть переменной величиной: скажем, у насосов серии DLX предусмотрена опциональная установка задней крышки со специальной регулировочной рукояткой, с помощью которой можно регулировать величину хода толкателя – соответственно, изгиб мембраны и объём импульса. В таком случае дозирование лучше корректировать с учётом показаний внешнего расходомера.

Общее руководство

Время и объём дозирования у разных моделей импульсных насосов-дозаторов могут регулироваться различными способами. У наиболее доступных моделей предусмотрен единственный вариант – ручная аналоговая или цифровая регулировка. Более "продвинутые" модели поддерживают работу с внешним датчиком уровня или импульсным расходомером. Наиболее сложные (насос серии BT , модель PH-RX-CL/M; насос DLX-PH-RX-CL/M и др.) оснащены встроенным контроллером, способным обрабатывать сигналы от датчиков уровня, потока, кислотности, окислительно-восстановительного потенциала, содержания хлора, температуры. Такие насосы по сути представляют собой компактные станции дозирования, с помощью которых можно решать единичные или комплексные задачи – к примеру, по водоподготовке или подаче лабораторных реактивов.

Системы дозирования могут создаваться и с использованием простых моделей – на базе внешних модульных контроллеров ; также такие системы предлагаются в виде готовых скомпонованных решений.

Производительность

Импульсные насосы-дозаторы являются наиболее распространённым видом насосов для дозирования относительно небольших, до 20 литров в час, объёмов жидких химических веществ. При необходимости подачи более значимых объёмов можно обратить внимание на перистальтический насос серии BH3-V PER (максимальная производительность – 100 литров в час) или на промышленные мембранные и плунжерные насосы (до 535 и 1027 л/час соответственно).

Развёрнутую информацию обо всех перечисленных сериях и моделях насосов, с подробными техническими характеристками, примерами применения и сопутствующими данными можно найти в специальных разделах сайта или запросить у онлайн-консультанта.