Проектирование и строительство домов

Проектирование и строительство домов

» » Размеры зигзагообразной антенны дмв на 57 канал. Самодельные зигзагообразные телевизионные антенны - самоделкин - сделай сам своими руками - схемы

Размеры зигзагообразной антенны дмв на 57 канал. Самодельные зигзагообразные телевизионные антенны - самоделкин - сделай сам своими руками - схемы

Today:

Антенна Харченко

    Зигзагообразная антенна, предложенная К. П. Харченко в 60-е годы, пользуется большой популярностью у радиолюбителей благодаря простой конструкции, хорошей повторяемости и широкополосности.

В пределах диапазона частот, на который рассчитана антенна, она обладает постоянными параметрами и практически не требует настройки.

Она представляет собой синфазную антенную решетку из двух ромбовидных элементов, расположенных друг над другом и имеющих одну общую пару точек питания.

Зигзагообразную антенну наиболее часто применяют в качестве широкополосной антенны для приема программ телевидения в диапазонах 1 - 5, 6 - 12 или 21 - 60 ДМВ канала.

Так же её можно с успехом использовать для работы в любительских УКВ диапазонах изготовив
её для 145 мгц или для 433 мгц. Зигзагообразная антенна с рефлектором имеет одностороннюю диаграмму направленности в виде вытянутых эллипсов как в горизонтальной, так и в вертикальной плоскостях, причем задний лепесток практически отсутствует.

При кажущейся на первый взгляд громоздкости всей системы (Яги гораздо меньше и меньше требуют расхода матералов),эта система полностью перекрывает диапазон в 144-148 мгц (по факту полоса гораздо шире,примерно 12 мгц) с хорошим КСВ не превышающим 1.2-1.3 и имеет лучшию диаграмму излучения.Коэфициент усиления такой антенны порядка 8.5 DBd, что эквивалентно примерно 4el YAGI на 145 мгц. Система из двух таких антенн уже развивает порядка 15 DBd. Имеет более прижатый лепесток излучения, максимально адаптированный для проведения радиосвязей в УКВ диапазонах. Питание антенны кабелем 50 ом.

Мной была изготовлена антенна и подручного материала в буквальном смыле. Имелось в наличии лист оцинкованной жести толщиной 0.8мм из которой я нарезал все полоски на элементы антенны, да пара деревянных реек. Крепление полос выполнено с помощью обычного клёпальника на 3-4 заклепки по углам. Ширина всех полос порядка 40мм, что обеспечило бОльшую широкополосность данной антенне. Полоски рефлектора прикручены к деревянной несущей (предварительно покрашенной) обычными шурупами.

    Для диапазона 145 мгц, размеры следующие:
    Рефлектор имеет длинну 1050мм х 40мм для каждой полосы.
    Сторона рамки 510мм.
    Зазор между углами рамок в точке подключения кабеля - 40мм
    Расстояние между активным элементом и рефлектором - 300мм
    Весь конструктив виден и понятен по фотографиям.

    Антенну можно выполнить и на ТВ диапазон.
    Установить её в горизонтальную или вертикальную поляризацию.
    Ниже, показана таблица для частотных каналов ТВ


Горизонтальная поляризация


Вертикальная поляризация

Антенна Харченко
или как оно выглядит в натуре:))
Частота резонанса 145.0 МГЦ

Pic 1
Крепление элементов
Pic 2
Рефлектор антенны
Pic 3
Зигзагообразный элемент
Pic 4
Точка питания
Pic 5
Крепление несущей
к мачте
Pic 6
Стойки и изолятор
по центру
Pic 7
3 el.YAGI 145 mhz
(для примера)
Pic 8
Все готово
к установке
Pic 9
Стоит красавица!

ON-LINE калькулятор, для расчета
антенны Харченко

Частота

λ

Длина L1

Длина L2

Длина B

Длина H

Диам. пров-ки

Длина пров-ки

Расстояние D

Примечание: D - расстояние между антенной и рефлектором

Антенна Харченко
для низкочастного диапазона DCMA - 450-460 MHZ
Частота резонанса 452.0 МГЦ

    Антенна была изготовлена из подручных материалов. Использован старый рефлектор-сетка
    от польской УКВ-ТВ антенны, которая ввиду своей непригодности уже была попросту мной выброшена.

В качестве активного элемента, использовал аллюминевый провод от электрического кабеля диаметром 4.5мм. Кабель использован тонкий, RG-58/C, на 50 ом, длинной 3 метра. Все расчеты выполненны на основе данных он-лайн калькулятора. Разница в силе сигнала, согласно встроенному
в модем измерителю поля, по сравнению со штатной антенной "хвостиком" составила более 20db, то есть показания при штатной антенне никогда не опускались ниже отметки -95db по сигналу EvDO.
При подключении антенны Харченко сигнал вырос и теперь находится на отметке -72db и иногда даже до -70db. Базовая станция удалена от места приёма на 10 км.Благодаря своей широкополосности, антенна не нуждается в настройке.

Таким образом, если поставить кабель с малым погонным затуханием на этих частотах, установить антенну на высоте более 15м от земли, можно запросто перекрыть дистанцию до БАЗЫ DCMA в более 20-25 км и получить доступ к интернету, даже в весьма удаленной деревне))))

Pic 1
Антенна готова
к установке
Pic 2
Установлена на уровне
2 этажа
Pic 3
Вид на антенну
из окна
Pic 4
Модем AXESS-TEL
CDMA 1-EvDO
Pic 5
Показания S-metr
модема
  • Что изменилось в эфире?
  • Требования к антеннам
  • О вибраторных антеннах
  • О спутниковом приеме
  • О параметрах антенн
  • О тонкостях изготовления
  • Виды антенн
  • О «полячках» и усилителях
  • С чего начать?
  • Когда-то хорошая телевизионная антенна была дефицитом, покупные качеством и долговечностью, мягко говоря, не отличались. Сделать антенну для «ящика» или «гроба» (старого лампового телевизора) своими руками считалось показателем мастерства. Интерес к самодельным антеннам не угасает и в наши дни. Ничего странного тут нет: условия приема ТВ кардинально изменились, а производители, полагая, что в теории антенн ничего существенно нового нет и не будет, чаще всего приспосабливают к давно известным конструкциям электронику, не задумываясь над тем, что главное для любой антенны – ее взаимодействие с сигналом в эфире.

    Что изменилось в эфире?

    Во-первых, почти весь объем ТВ-вещания в настоящее время осуществляется в диапазоне ДМВ . Прежде всего из экономических соображений, в нем намного упрощается и удешевляется антенно-фидерное хозяйство передающих станций, и, что еще более важно – потребность в его регулярном обслуживании высококвалифицированными специалистами, занятыми тяжелым, вредным и опасным трудом.

    Второе – ТВ-передатчики теперь покрывают своим сигналом практически все более-менее населенные места , а развитая сеть связи обеспечивает подачу программ в самые глухие углы. Там вещание в обитаемой зоне обеспечивают маломощные необслуживаемые передатчики.

    Третье, изменились условия распространения радиоволн в городах . На ДМВ промышленные помехи просачиваются слабо, но железобетонные многоэтажки для них – хорошие зеркала, многократно переотражающие сигнал вплоть до его полного затухания в зоне, казалось бы, уверенного приема.

    Четвертое – ТВ-программ в эфире сейчас очень много, десятки и сотни . Насколько это множество разнообразно и содержательно – другой вопрос, но рассчитывать на прием 1-2-3 каналов ныне бессмысленно.

    Наконец, получило развитие цифровое вещание . СигналDVB T2 – штука особенная. Там, где он еще хоть чуть-чуть, на 1,5-2 дБ, превышает шумы, прием отличный, как ни в чем ни бывало. А чуть дальше или в стороне – нет, как отрезало. К помехам «цифра» почти не чувствительна, но при рассогласовании с кабелем или фазовых искажениях в любом месте тракта, от камеры до тюнера, картинка может рассыпаться в квадратики и при сильном чистом сигнале.

    Требования к антеннам

    В соответствии с новыми условиями приема, изменились и основные требования к ТВ-антеннам:

    • Такие ее параметры, как коэффициент направленного действия (КНД) и коэффициент защитного действия (КЗД) ныне определяющего значения не имеют: современный эфир очень грязный, и по малюсенькому боковому лепестку диаграммы направленности (ДН), хоть какая-то помеха, да пролезет, и бороться с ней нужно уже средствами электроники.
    • Взамен особое значение приобретает собственный коэффициент усиления антенны (КУ). Антенна, хорошо «облавливающая» эфир, а не смотрящая на него сквозь маленькую дырочку, даст запас мощности принятого сигнала, позволяющий электронике очистить его от шумов и помех.
    • Современная телевизионная антенна, за редчайшими исключениями, должна быть диапазонной, т.е. ее электрические параметры должны сохраняться естественным образом, на уровне теории, а не втискиваться в приемлемые рамки путем инженерных ухищрений.
    • ТВ-антенна должна согласовываться в кабелем во всем своем рабочем диапазоне частот без дополнительных устройств согласования и симметрирования (УСС).
    • Амплитудно-частотная характеристика антенны (АЧХ) должна быть возможно более гладкой. Резким выбросам и провалам непременно сопутствуют фазовые искажения.

    Последние 3 пункта обусловлены требованиями приема цифровых сигналов. Настроенные, т.е. работающие теоретически на одной частоте, антенны можно «растянуть» по частоте, напр. антенны типа «волновой канал» на ДМВ с приемлемым отношением сигнал/шум захватывают 21-40 каналы. Но их согласование с фидером требует применения УСС, которые либо сильно поглощают сигнал (ферритовые), либо портят фазовую характеристику на краях диапазона (настроенные). И «цифру» такая антенна, отлично работающая на «аналоге», будет принимать плохо.

    В связи с этим, из всего великого антенного многообразия, в данной статье будут рассмотрены антенны для телевизора, доступные для самостоятельного изготовления, следующих типов:

  • Частотнонезависимая (всеволновая) – не отличается высокими параметрами, но очень проста и дешева, ее можно сделать буквально за час. За городом, где эфир почище, она вполне сможет принимать цифру или достаточно мощный аналог не небольшом удалении от телецентра.
  • Диапазонная логопериодическая. Ее, образно выражаясь, можно уподобить рыболовецкому тралу, уже при облавливании сортирующему добычу. Она тоже довольно проста, идеально согласуется с фидером во всем своем диапазоне, абсолютно не меняет в нем параметры. Техпараметры – средние, поэтому более подойдет для дачи, а в городе в качестве комнатной.
  • Несколько модификаций зигзагообразной антенны , или Z-антенны. В диапазоне МВ это весьма солидная конструкция, требующая немалого умения и времени. Но на ДМВ она вследствие принципа геометрического подобия (см. далее), настолько упрощается и съеживается, что вполне может быть использована как высокоэффективная комнатная антенна при почти любых условиях приема.
  • Примечание: Z-антенна, если использовать предыдущую аналогию – частый бредень, сгребающий все, что есть в воде. По мере замусоривания эфира она было вышла из употребления, но с развитием цифрового ТВ вновь оказалась на коне – во всем своем диапазоне она так же отлично согласована и держит параметры, как «логопедка».

    Точное согласование и симметрирование почти всех описанных далее антенн достигается благодаря прокладке кабеля через т.наз. точку нулевого потенциала. К ней предъявляются особые требования, о которых подробнее будет сказано далее.

    О вибраторных антеннах

    В полосе частот одного аналогового канала можно передать до нескольких десятков цифровых. И, как уже сказано, цифра работает при ничтожном отношении сигнал/шум. Поэтому в очень удаленных от телецентра, куда сигнал одного-двух каналов еле добивает, местах, для приема цифрового ТВ может найти применение и старый добрый волновой канал (АВК, антенна волновой канал), из класса вибраторных антенн, так что в конце уделим несколько строк и ей.

    О спутниковом приеме

    Делать самому спутниковую антенну нет никакого смысла. Головку и тюнер все равно нужно покупать, а за внешней простотой зеркала кроется параболическая поверхность косого падения, которую с нужной точностью может выполнить далеко не всякое промышленное предприятие. Единственное, что под силу самодельщикам — настроить спутниковую антенну, об этом читайте тут.

    О параметрах антенн

    Точное определение упомянутых выше параметров антенн требует знания высшей математики и электродинамики, но понимать их значение, приступая к изготовлению антенны, нужно. Поэтому дадим несколько грубые, но все же поясняющие смысл определения (см. рис. справа):

    К определению параметров антенн

    • КУ – отношение принятой антенной на основной (главный) лепесток ее ДН мощности сигнала, к его же мощности, принятой в том же месте и на той же частоте ненаправленной, с круговой, ДН, антенной.
    • КНД – отношение телесного угла всей сферы к телесному углу раскрыва главного лепестка ДН, в предположении, что его сечение – круг. Если главный лепесток имеет разные размеры в разных плоскостях, сравнивать нужно площадь сферы и площадь сечения ею главного лепестка.
    • КЗД – отношение принятой на главный лепесток мощности сигнала к сумме мощностей помех на той же частоте, принятой всеми побочными (задним и боковыми) лепестками.

    Примечания:

  • Если антенна диапазонная, мощности считаются на частоте полезного сигнала.
  • Поскольку совершенно ненаправленных антенн не бывает, за такую принимают полуволновой линейный диполь, ориентированный по направлению электрического вектора поля (по его поляризации). Его КУ считается равным 1. ТВ программы передаются с горизонтальной поляризацией.
  • Следует помнить, что КУ и КНД не обязательно взаимосвязаны. Есть антенны (напр. «шпионская» – однопроводная антенна бегущей волны, АБВ) с высокой направленностью, но единичным или меньшим усилением. Такие смотрят вдаль как бы сквозь диоптрический прицел. С другой стороны, существуют антенны, напр. Z-антенна, у которых невысокая направленность сочетается со значительным усилением.

    О тонкостях изготовления

    Все элементы антенн, по которым протекают токи полезного сигнала (конкретно – в описаниях отдельных антенн), должны соединяться между собой пайкой или сваркой. В любом сборном узле на открытом воздухе электрический контакт скоро нарушится, и параметры антенны резко ухудшатся, вплоть до полной ее негодности.

    Особенно это касается точек нулевого потенциала. В них, как говорят специалисты, наблюдается узел напряжения и пучность тока, т.е. его наибольшее значение. Ток при нулевом напряжении? Ничего удивительного. Электродинамика ушла от закона Ома на постоянном токе так же далеко, как Т-50 от воздушного змея.

    Места с точками нулевого потенциала для цифровых антенн лучше всего выполнять гнутыми из цельного металла. Небольшой «ползучий» ток на сварке при приеме аналога на картинке, скорее всего, не скажется. Но, если принимается цифра на границе шумов, то тюнер из-за «ползучки» может не увидеть сигнала. Который при чистом токе в пучности дал бы стабильный прием.

    О пайке кабеля

    Оплетка (да и центральная жила нередко) современных коаксиальных кабелей делаются не из меди, а из стойких к коррозии и недорогих сплавов. Паяются они плохо и, если долго греть, можно пережечь кабель. Поэтому паять кабели нужно 40-Вт паяльником, легкоплавким припоем и с флюс-пастой вместо канифоли или спиртоканифоли. Пасты жалеть не нужно, припой сразу же растекается по жилкам оплетки только под слоем кипящего флюса.

    Частотнонезависимая антенна с горизонтальной поляризацией

    Виды антенн
    Всеволновая

    Всеволновая (точнее, частотнонезависимая, ЧНА) антенна показана на рис. Она – две треугольных металлических пластинки, две деревянных рейки, да много медных эмалированных проволок. Диаметр проволоки значения не имеет, а расстояние между концами проволок на рейках – 20-30 мм. Зазор между пластинами, к которым припаяны другие концы проволок – 10 мм.

    Примечание: вместо двух металлических пластин лучше взять квадрат из одностороннего фольгированного стеклотекстолита в вырезанными по меди треугольниками.

    Ширина антенны равна ее высоте, угол раскрыва полотен – 90 градусов. Схема прокладки кабеля показана там же на рис. Точка, отмеченная желтым – точка квази-нулевого потенциала. Припаивать в ней оплетку кабеля к полотну не нужно, достаточно туго подвязать, для согласования хватит емкости между оплеткой и полотном.

    ЧНА, растянутая в окне шириной 1,5 м, принимает все метровые и ДЦМ каналы почти со всех направлений, кроме провала около 15 градусов в плоскости полотна. В этом ее преимущество в местах, где возможен прием сигналов от разных телецентров, не нужно вращать. Недостатки – единичный КУ и нулевой КЗД, поэтому в зоне действия помех и вне зоны уверенного приема ЧНА не годится.

    Примечание : есть и другие типы ЧНА, напр. в виде двухвитковой логарифимической спирали. Она компактнее ЧНА из треугольных полотен в том же диапазоне частот, поэтому иногда используется в технике. Но в быту это преимуществ не дает, сделать спиральную ЧНА сложнее, с коаксиальным кабелем согласовать труднее, поэтому не рассматриваем.

    На основе ЧНА был создан очень популярный когда-то веерный вибратор (рога, рогулька, рогатка), см. рис. Его КНД и КЗД что-то около 1,4 при довольно гладкой АЧХ и линейной ФЧХ, так что для цифры он подошел бы и сейчас. Но – работает только на МВ (1-12 каналы), а цифровое вещание идет на ДМВ. Впрочем, на селе, при подъеме на 10-12 м, может сгодиться для приема аналога. Мачта 2 может быть из любого материала, но крепежные планки 1 – из хорошего ненамокающего диэлектрика: стеклотекстолита или фторопласта толщиной не менее 10 мм.


    Веерный вибратор для приема МВ ТВ

    Пивная всеволновка


    Антенны из пивных банок

    Всеволновая антенна из пивных банок явно не плод похмельных галлюцинаций спившегося радиолюбителя. Это действительно очень хорошая антенна на все случаи приема, нужно только сделать ее правильно. Причем исключительно простая.

    В основе ее конструкции следующее явление: если увеличивать диаметр плеч обычного линейного вибратора, то рабочая полоса его частот расширяется, а прочие параметры остаются неизменными. В дальней радиосвязи с 20-х годов используется т.наз. диполь Надененко, основанный на этом принципе. А пивные банки по размерам как раз подходят в качестве плеч вибратора на ДМВ. В сущности, ЧНА и есть диполь, плечи которого неограниченно расширяются до бесконечности.

    Простейший пивной вибратор из двух банок годится для комнатного приема аналога в городе даже без согласования с кабелем, если его длина не более 2 м, слева на рис. А если собрать из пивных диполей вертикальную синфазную решетку с шагом в полволны (справа на рис.), согласовать ее и отсимметрировать с помощью усилителя от польской антенны (о нем речь еще пойдет), то благодаря сжатию главного лепестка ДН по вертикали такая антенна даст и хороший КУ.

    Усиление «пивнухи» можно еще увеличить, добавив заодно КЗД, если сзади нее поместить экран из сетки на расстоянии, равном половине шага решетки. Монтируется пивная решетка на мачте из диэлектрика; механические связи экрана с мачтой – тоже диэлектрические. Остальное ясно из след. рис.


    Синфазная решетка из пивных диполей

    Примечание: оптимальное количество этажей решетки – 3-4. При 2-х выигрыш в усилении будет небольшим, а большее трудно согласовать с кабелем.

    Видео: антенна из пивных банок в программе «Дешево и сердито»

    «Логопедка»

    Логопериодическая антенна (ЛПА) представляет собой собирающую линию, к которой попеременно подключаются половинки линейных диполей (т.е. куски проводника длиной в четверть рабочей волны), длина и расстояние между которыми меняются в геометрической прогрессии с показателем меньше 1, в центре на рис. Линия может быть как настроенной (с КЗ на противоположном от места подключения кабеля конце), так и свободной. ЛПА на свободной (ненастроенной) линии для приема цифры предпочтительнее: она выходит длиннее, но ее АЧХ и ФЧХ гладкие, а согласование с кабелем не зависит от частоты, поэтому на ней мы и остановимся.


    Конструкция логопериодической антенны

    ЛПА может быть изготовлена на любой, до 1-2 ГГц, наперед заданный диапазон частот. При изменении рабочей частоты ее активная область из 1-5 диполей смещается вперед-назад по полотну. Поэтому, чем ближе показатель прогрессии к 1, и соответственно меньше угол раскрыва антенны, тем большее усиление она даст, но при этом возрастает ее длина. На ДМВ от наружной ЛПА можно добиться 26 дБ, а от комнатной – 12 дБ.

    ЛПА, можно сказать, по совокупности качеств идеальная цифровая антенна , поэтому остановимся на ее расчете несколько подробнее. Основное, что нужно знать, что увеличение показателя прогрессии (тау на рис.) дает прирост усиления, а уменьшение угла раскрыва ЛПА (альфа) увеличивает направленность. Экран для ЛПА не нужен, он на ее параметры почти не влияет.

    Расчет цифровой ЛПА имеет особенности:

  • Начинают его, ради запаса по частоте, со второго по длине вибратора.
  • Затем, взяв обратную величину от показателя прогрессии, рассчитывают самый длинный диполь.
  • После самого короткого, исходя из заданного диапазона частот, диполя, добавляют еще один.
  • Поясним на примере. Допустим, наши цифровые программы лежат в диапазоне 21-31 ТВК, т.е. в 470-558 МГц по частоте; длины волн соответственно – 638-537 мм. Также допустим, что нам нужно принимать слабый зашумленный сигнал вдали от станции, поэтому берем максимальный (0,9) показатель прогрессии и минимальный (30 градусов) угол раскрыва. Для расчета понадобится половина угла раскрыва, т.е. 15 градусов в нашем случае. Раскрыв можно еще уменьшить, но длина антенны непомерно, по котангенсу, возрастет.

    Считаем В2 на рис: 638/2 = 319 мм, а плечи диполя будут по 160 мм, до 1 мм можно округлять. Расчет нужно будет вести, пока не получится Bn = 537/2 = 269 мм, и затем просчитать еще один диполь.

    Теперь считаем А2 как В2/tg15 = 319/0,26795 = 1190 мм. Затем, через показатель прогрессии, А1 и В1: А1 = А2/0,9 = 1322 мм; В1 = 319/0,9 = 354,5 = 355 мм. Далее последовательно, начиная с В2 и А2, умножаем на показатель, пока не дойдем до 269 мм:

    • В3 = В2*0,9 = 287 мм; А3 = А2*0,9 = 1071 мм.
    • В4 = 258 мм; А4 = 964 мм.

    Стоп, у нас уже меньше 269 мм. Проверяем, уложимся ли по усилению, хотя и так ясно, что нет: чтобы получить 12 дБ и более, расстояния между диполями не должны превышать 0,1-0,12 длины волны. В данном случае имеем для В1 А1-А2 = 1322 – 1190 = 132 мм, а это 132/638 = 0,21 длины волны В1. Нужно «подтянуть» показатель к 1, до 0,93-0,97, вот и пробуем разные, пока первая разница А1-А2 не сократится вдвое и более. Для максимума в 26 дБ нужно расстояние между диполями в 0,03-0,05 длины волны, но не менее 2-х диаметров диполя, 3-10 мм на ДМВ.

    Примечание: остаток линии за самым коротким диполем, обрезаем, он нужен только для расчета. Поэтому реальная длина готовой антенны получится всего около 400 мм. Если наша ЛПА наружная, это очень хорошо: можно уменьшить раскрыв, получив большую направленность и защиту от помех.

    Видео: антенна для цифрового ТВ DVB T2

    О линии и мачте

    Диаметр трубок линии ЛПА на ДМВ – 8-15 мм; расстояние между их осями – 3-4 диаметра. Учтем еще, что тонкие кабели-«шнурки» дают на ДМВ такое затухание на метр, что все антенно-усилительные ухищрения сойдут на нет. Коаксиал для наружной антенны нужно брать хороший, диаметром по оболочке от 6-8 мм. Т.е., трубки для линии должны быть тонкостенными цельнотянутыми. Подвязывать кабель к линии снаружи нельзя, качество ЛПА резко упадет.

    Крепить наружную ЛПА к мачте нужно, разумеется, за центр тяжести, иначе малая парусность ЛПА превратится в огромную и трясущуюся. Но соединять металлическую мачту прямо с линией тоже нельзя: нужно предусмотреть диэлектрическую вставку не менее 1,5 м длиной. Качество диэлектрика большой роли тут не играет, пойдет проолифленное и покрашенное дерево.

    Об антенне «Дельта»

    Если ДМВ ЛПА согласуется с кабелем усилителем (см. далее, о польских антеннах), то к линии можно пристроить плечи метрового диполя, линейные или веерные, как у «рогатки». Тогда получим универсальную МВ-ДМВ антенну отличного качества. Такое решение использовано в популярной антенне «Дельта», см. рис.


    Антенна «Дельта»

    Зигзаг в эфире

    Z-антенна с рефлектором дает усиление и КЗД такие же, как ЛПА, но главный лепесток ее ДН более чем вдвое шире по горизонтали. Это может быть важно на селе, когда есть прием ТВ с разных направлений. А дециметровая Z-антенна имеет небольшие в плане размеры, что существенно для комнатного приема. Но ее рабочий диапазон теоретически не безграничен, перекрытие по частоте при сохранении приемлемых для цифры параметров – до 2,7.


    Z-антенна МВ

    Конструкция Z-антенны МВ показана на рис; красным выделен путь прокладки кабеля. Там же слева внизу – более компактный кольцевой вариант, в просторечии – «паук». По нему хорошо видно, что Z-антенна родилась как комбинация ЧНА с диапазонным вибратором; есть в ней кое-что и от ромбической антенны, которая в тему не вписывается. Да, кольцо «паука» не обязательно должно быть деревянным, это может быть обруч из металла. «Паук» принимает 1-12 МВ каналы; ДН без рефлектора – почти круговая.

    Классический же зигзаг работает или на 1-5, или на 6-12 каналах, но для его изготовления нужны только деревянные рейки, медный эмалированный провод c d = 0,6-1,2 мм да несколько обрезков фольгированного стеклотекстолита, поэтому даем размеры, через дробь для 1-5/6-12 каналов: А = 3400/950 мм, Б, С = 1700/450 мм, b = 100/28 мм, В = 300/100 мм. В точке Е – нулевой потенциал, здесь нужно оплетку спаять с металлизированной опорной пластиной. Размеры рефлектора, тоже 1-5/6-12: А = 620/175 мм, Б = 300/130 мм, Г = 3200/900 мм.

    Диапазонная Z-антенна с рефлектором дает усиление в 12 дБ, настроенная на один канал – 26 дБ. Чтобы на основе диапазонного зигзага построить одноканальный, нужно взять сторону квадрата полотна по середине ее ширины в четверть длины волны и пересчитать пропорционально все прочие размеры.

    Народный зигзаг

    Как видим, Z-антенна МВ – довольно сложное сооружение. Но ее принцип показывает себя во всем блеске на ДМВ. Z-антенну ДМВ с емкостными вставками, сочетающая в себе достоинства «классики» и «паука», сделать настолько просто, что она еще в СССР заслужила звание народной, см. рис.


    Народная ДМВ антенна

    Материал – медная трубка или алюминиевый лист толщиной от 6 мм. Боковые квадратики цельные из металла или затянутые сеткой, или закрытые жестянкой. В двух последних случаях их нужно пропаять по контуру. Коаксиал резко гнуть нельзя, поэтому ведем его так, чтобы он дошел до бокового угла, а затем не выходил за пределы емкостной вставки (бокового квадратика). В т. А (точка нулевого потенциала) оплетку кабеля электрически соединяем с полотном.

    Примечание: алюминий не паяется обычными припоями и флюсами, поэтому алюминиевая «народная» годится для наружной установки только после герметизации электрических соединений силиконом, в ней ведь все на винтах.

    Видео: пример двойной треугольной антенны

    Волновой канал

    Антенна волновой канал

    Антенна волновой канал (АВК), или антенна Удо-Яги из доступных для самостоятельного изготовления способна дать наибольшие КУ, КНД и КЗД. Но принимать цифру на ДМВ она может только на 1 или 2-3 соседних каналах, т.к. относится к классу остро настроенных антенн. Ее параметры за пределами частоты настройки резко ухудшаются. АВК рекомендуется применять с очень плохих условиях приема, причем для каждого ТВК делать отдельную. К счастью, это не очень сложно – АВК проста и дешева.

    В основе работы АВК – «сгребание» электромагнитного поля (ЭМП) сигнала к активному вибратору. Внешне небольшая, легкая, с минимальной парусностью, АВК может иметь эффективную апертуру в десятки длин волн рабочей частоты. Укороченные и поэтому имеющие емкостный импеданс (полное сопротивление) директоры (направители) направляют ЭМП к активному вибратору, а рефлектор (отражатель), удлиненный, с индуктивным импедансом, отбрасывает к нему то, что проскочило мимо. Рефлектор в АВК нужен всего 1, но директоров может быть от 1 до 20 и более. Чем их больше, тем выше усиление АВК, но уже полоса ее частот.

    От взаимодействия с рефлектором и директорами волновое сопротивление активного (с которого снимается сигнал) вибратора падает тем больше, чем ближе к максимуму усиления настроена антенна, и согласование с кабелем теряется. Поэтому активный диполь АВК делают петлевым, его исходное волновое сопротивление не 73 Ом, как у линейного, а 300 Ом. Ценой его снижения до 75 Ом АВК с тремя директорами (пятиэлементную, см. рис. справа) удается настроить почти что на максимум усиления в 26 дБ. Характерная для АВК ДН в горизонтальной плоскости приведена на рис. в начале статьи.

    Элементы АВК соединяются со стрелой в точках нулевого потенциала, поэтому мачта и стрела могут быть любыми. Очень хорошо подходят пропиленовые трубы.

    Расчет и настройка АВК под аналог и цифру несколько различны. Под аналог волновой канал нужно рассчитывать на несущую частоту изображения Fи, а под цифру – на середину спектра ТВК Fс. Почему так – здесь объяснять, к сожалению, нет места. Для 21-го ТВК Fи = 471,25 МГц; Fс = 474 МГц. ДМВ ТВК расположены вплотную друг к другу через 8 МГц, поэтому их настроечные частоты для АВК рассчитываются просто: Fn = Fи/Fс(21 ТВК) + 8(N – 21), где N – номер нужного канала. Напр. для 39 ТВК Fи = 615,25 МГц, а Fс = 610 МГц.

    Чтобы не записывать множество цифр, удобно размеры АВК выражать в долях длины рабочей волны (она считается как Л = 300/F, МГц). Длину волны принято обозначать малой греческой буквой лямбда, но, поскольку в интернете греческого алфавита по умолчанию нет, мы условно обозначим ее большой русской Л.

    Размеры оптимизированной под цифру АВК, по рис., таковы:

    U-петля: УСС для АВК

    • Р = 0,52Л.
    • В = 0,49Л.
    • Д1 = 0,46Л.
    • Д2 = 0,44Л.
    • Д3 = 0,43л.
    • a = 0,18Л.
    • b = 0,12Л.
    • c = d = 0,1Л.

    Если не нужно большого усиления, но важнее уменьшение габаритов АВК, то Д2 и Д3 можно убрать. Все вибраторы выполняются из трубки или прутка диаметром 30-40 мм для 1-5 ТВК, 16-20 мм для 6-12 ТВК и 10-12 мм на ДМВ.

    АВК требует точного согласования с кабелем. Именно небрежным выполнением устройства согласования и симметрирования (УСС) объясняется большинство неудач любителей. Самое простое УСС для АВК – U-петля из того же коаксиального кабеля. Ее конструкция ясна из рис. справа. Расстояние между сигнальными клеммами 1-1 140 мм для 1-5 ТВК, 90 мм для 6-12 ТВК и 60 мм на ДМВ.

    Теоретически длина колена l должна быть в половину длины рабочей волны, так и значится в большинстве публикаций в интернете. Но ЭМП в U-петле сосредоточено внутри заполненного изоляцией кабеля, поэтому нужно обязательно (для цифры – особенно обязательно) учитывать его коэффициент укорочения. Для 75-омных коаксиалов он колеблется в пределах 1,41-1,51, т.е. l нужно брать от 0,355 до 0,330 длины волны, и брать точно, чтобы АВК была АВК, а не набором железок. Точное значение коэффициента укорочения всегда есть в сертификате на кабель.

    В последнее время отечественная промышленность начала выпускать перенастраиваемые АВК для цифры, см. рис. Идея, надо сказать, отличная: передвигая элементы по стреле, можно точно настроить антенну под местные условия приема. Лучше, конечно, чтобы это делал специалист – поэлементная настройка АВК взаимозависима, и дилетант непременно запутается.


    АВК для цифрового ТВ

    О «полячках» и усилителях

    У многих пользователей польские антенны, ранее прилично принимавшие аналог, цифру брать отказываются – рвется, а то и вовсе пропадает. Причина, прошу прощения, похабно-коммерческий подход к электродинамике. Стыдно порой бывает за коллег, сляпавших такое «чудо»: АЧХ и ФЧХ похожи то ли на ежа-псориазника, то ли лошадиный гребень с выломанными зубьями.

    Единственно, что хорошо в «полячках» – их усилители для антенны. Собственно, они и не дают сим изделиям бесславно помереть. Усилители «поячек», во-первых, широкополосные малошумящие. И, что еще важнее – с высокоомным входом. Это позволяет при той же напряженности ЭМП сигнала в эфире подать на вход тюнера в несколько раз большую его мощность, что дает возможность электронике «выдрать» цифру из совсем уж безобразных шумов. Кроме того, вследствие большого входного сопротивления польский усилитель – идеальное УСС для любых антенн: что ни цепляй ко входу, на выходе – точно 75 Ом без отраженки и ползучки.

    Однако при очень плохом сигнале, вне зоны уверенного приема, польский усилитель уже не тянет. Питание на него подается по кабелю, и развязка по питанию отнимает 2-3 дБ отношения сигнал/шум, которых может как раз и не хватить, чтобы цифра пошла в самой глубинке. Тут нужен хороший усилитель ТВ сигнала с раздельным питанием. Располагаться он будет, скорее всего, возле тюнера, а УСС для антенны, если оно требуется, придется делать отдельно.


    Усилитель ТВ сигнала ДМВ

    Схема такого усилителя, показавшая почти 100% повторяемость даже при выполнении начинающими радиолюбителями, приведена на рис. Регулировка усиления – потенциометром Р1. Дроссели развязки L3 и L4 – стандартные покупные. Катушки L1 и L2 выполняются по размерам на монтажной схеме справа. Они входят в состав полосовых фильтров сигнала, поэтому небольшие отклонения их индуктивности не критичны.

    Однако топологию (конфигурацию) монтажа нужно соблюдать точно! И точно также обязателен металлический экран (metal shield), отделяющий выходные цепи от прочей схемы.

    С чего начать?

    Мы надеемся, что и опытные мастера найдут в этой статье некоторое количество полезных им сведений. А новичкам, еще не чувствующим эфир, начинать лучше всего с пивной антенны. Автор статьи, отнюдь и отнюдь не дилетант в данной области, в свое время был немало удивлен: простейшая «пивнушка» с ферритовым согласованием, как оказалось, и МВ берет не хуже испытанной «рогатки». А что стоит сделать ту и другую – см. текст.

    К. Харченко

    Прием телевизионных передач на радиочастотах 470...622 МГц (21-39 каналы) диапазона дециметровых волн (ДЦВ) требует соответствующего подхода к расчету и конструированию антенных устройств.

    Некоторые радиолюбители пытаются решить эту задачу простым пересчетом, основанным на принципах электродинамического подобия антенн, параметров имеющихся конструкций телевизионных антенн метрового диапазона (1-12 каналы). При этом, они неизбежно сталкиваются с трудностями самого пересчета и зачастую не получают желаемых результатов.

    Каковы же основные принципы подхода к решению этой задачи?

    В свободном пространстве радиоволны, излученные антенной, имеют сферическую расходимость, в результате чего электрическая напряженность поля Е убывает обратно пропорционально расстоянию r от антенны.

    В реальных условиях распространяющиеся радиоволны претерпевают большее затухание, чем существующее в свободном пространстве. Для учета этого затухания вводят множитель ослабления F(r)= Е/Есв, который характеризует отношение напряженности поля для реальных условий, к напряженности поля свободного пространства при равных расстояниях, одинаковых антеннах и подводимых к ним мощностях и т. д. С помощью множителя ослабления напряженность поля, создаваемая передающей антенной в реальных условиях на расстоянии r, может быть выражена как

    Приемная антенна преобразует энергию электромагнитной волны в электрический сигнал. Количественно эту способность антенны характеризуют ее эффективной площадью Sэфф. Она соответствует той плошади фронта волны, из которой поглощается вся содержащаяся в ней энергия, С КНД эта площадь связана соотношением:



    Изложенное здесь позволяет написать уравнение радиопередачи, которое связывает параметры аппаратуры связи (передатчика и приемника) и антенн и определяет уровень сигнала на трассе: при мощности передатчика Р1 мощность Р2 сигнала на входе приемника будет равна



    Множитель в этом выражении, заключенный в скобки, определяет основные потери при распространении радиоволн (основные потери передачи). При этом предполагается, что антенна согласована с фидером, а фидер с телевизионным приемником и, кроме того, антенна согласована по поляризации с полем сигнала.

    Рассмотрим подробнее выражение (11).



    Этот конкретный пример показывает, что с увеличением частоты (уменьшением длины волны) телевизионных передач мощность сигнала, поступающего на вход телевизора при прочих равных условиях, быстро уменьшается, т. е. условия приема ухудшаются. На стороне передачи эти неприятности стараются компенсировать увеличением произведения Р1У1. Но в реальных условиях множитель F(r) и КПД приемного фидера с ростом частоты уменьшаются, поэтому необходимость увеличения коэффициента усиления приемной антенны Y2 становится неизбежностью. Этот вывод влечет за собой еще один, заключающийся в том, что, как правило, для уверенного приема программ 21-39 телевизионных каналов нужно применять новые, более направленные антенны по сравнению с антеннами, применяемыми в диапазоне волн 1-5 каналов.

    Стремясь получить устойчивый прием телепередач, радиолюбители вынуждены усложнять антенны, например, строить антенные решетки, т. е. объединяют несколько однотипных, зарекомендовавших себя на практике антенн (каждая из которых имеет свою пару точек питания) с общей системой питания и только одной (общей для всех) парой точек питания. При этом они нередко недооценивают важность этапа согласования при построении антенных решеток, связанного с относительно сложными измерениями. Сказанное проиллюстрируем таким конкретным примером.



    Подобный эффект получается и при параллельном соединении трех элементов (рис. 1, в). Продолжая такие рассуждения, можно получить зависимость, которую иллюстрирует рис. 2.



    Здесь эффективная площадь антенны прямо пропорциональна числу n излучателей в решетке, равно как и поглощаемая антенной мощность Р сумм. Мощность же Р пр подводимая к приемнику, с увеличением числа n асимптотически приближается к 4Рo. Этот пример показывает бесплодность попыток увеличить коэффициент усиления антенной решетки без учета согласования ее элементов с фидером. Трудности, связанные с согласованием, преодолевают либо применением специальных согласующих устройств, либо выбором специальных типов антенн. Например, в дециметровом и особенно в сантиметровом диапазонах волн применяют, как правило, так называемые апертурные антенны, т. е. рупорные или параболические. Особенность таких антенн заключена в том, что они имеют простой, «небольших» размеров облучатель, и «большой», сравнительно сложный рефлектор. Большой рефлектор и обусловливает направленные свойства антенны, определяет ее КНД.

    Выполнить в любительских услозиях антенны апертурного типа на диапазон ДЦВ не представляется возможным, так как они громоздки и сложны. Но некоторое подобие апертурной антенны сконструировать можно, положив в основу облучатель в виде известной зигзагообразной антенны (з-антенны). Полотно такой антенны состоит из восьми замкнутых одинаковых проводников, которые образуют две ромбовидные ячейки (рис. 3).



    Для формирования диаграммы направленности антенны, в частности, необходимо, чтобы излучатели были сфазированы и разнесены относительно друг друга. З-антенна имеет одну пару точек питания (а-б), к которой непосредственно подключают фидер. Благодаря такой конструкции антенны ее проводники возбуждаются так (частный случай направления токов на проводниках антенны на рис. 3 показан стрелками), что образуется своеобразная синфазная решетка из четырех вибраторов. В точках П-П проводники полотна антенны замкнуты между собой и здесь всегда имеется пучность тока. Антенна имеет линейную поляризацию. Ориентация вектора электрического поля Е на рис. 3 показана стрелками.

    Диаграммы направленности з-антенны удовлетворяют диапазону частот с перекрытием fмакс/fмин =2-2,5. Ее КНД мало зависит от изменения угла а (альфа), так как с увеличением его уменьшение направленности антенны в плоскости Н компенсируется увеличением направленности в плоскости Е, и наоборот. Характеристика направленности з-антенны симметрична относительно плоскости, в которой расположены проводники ее полотна.

    В связи с тем, что в точках П-П нет разрыва проводников полотна антенны, то здесь имеются точки нулевого потенциала (нули напряжения и максимумы тока) независимо от длины волны. Это обстоятельство позволяет обойтись без специального симметрирующего устройства при питании коаксиальным кабелем.

    Кабель прокладывают через точку нулевого потенциала П и по двум проводникам полотна антенны подводят к точкам ее питания (рис. 4). Здесь оплетку кабеля соединяют с одной из точек питания антенны, а центральный проводник - с другой. Принципиально оплетку кабеля в точке П тоже нужно замкнуть накоротко на полотно антенны, однако, как показала практика, делать это не обязательно. Достаточно кабель подвизать к проводам полотна антенны в точке П, не нарушая его полихлорвиниловой оболочки.

    Зигзагообразная антенна широкополосна и удобна тем, что ее конструкция сравнительно проста. Это ее свойство позволяет допускать значительные отклонения (неизбежные при изготовлении) в ту или иную сторону от расчетных размеров ее элементов практически без нарушения электрических параметров.

    Кривая 1, показанная на рис. 5, характеризует зависимость КБВ от

    Пользуясь графиками рис. 5, можно построить з-антенну, имеющую максимально возможный КНД для данного типа полотна антенны. Ее входное сопротивление в диапазоне частот в значительной степени зависит от поперечных размеров проводников, из которых выполнено полотно. Чем толще (шире) проводники, тем лучше согласование антенны с фидером. Вообще же для полотна з-антенны пригодны проводники самого различного профиля - трубки, пластины, уголки и т. п.

    Рабочий диапазон з-антенны можно расширить в сторону более низких частот без увеличения размера L путем образования дополнительной распределенной емкости проводников ее полотна, а общие размеры, выраженные в длинах максимальной волны рабочего диапазона, уменьшить. Достигается это перемыканием части проводников з-антенны, например, дополнительными проводниками (рис. 6),



    Которые и создают дополнительную распределенную емкость.

    Диаграммы направленности такой антенны в плоскости Е аналогичны диаграммам симметричного вибратора. В плоскости H диаграммы направленности с увеличением частоты претерпевают значительные изменения. Так, в начале рабочего диапазона частот они лишь слегка сжаты под углами, близкими к 90°, а в конце рабочего диапазона поле практически отсутствует в секторе углов ±40...140°.

    Для увеличения направленности антенны, состоящей из зигзагообразного полотна, применяют плоский экран-рефлектор, который часть высокочастотной энергии, падающей на экран, отражает в сторону полотна антенны. В плоскости полотна фаза высокочастотного поля, отраженного рефлектором, должна быть близка к фазе поля, создаваемого самим полотном. В этом случае происходит требуемое сложение полей и экран-рефлектор примерно удваивает первоначальный коэффициент усиления антенны. Фаза отраженного поля зависит от формы и размеров экрана, а также от расстояния S между ним и полотном антенны.

    Как правило, размеры экрана значительные и фаза отраженного поля зависит, главным образом, от расстояния S. На практике редко выполняют рефлектор в виде единого металлического листа. Чаще он представляет собой ряд проводников, расположенных в одной плоскости параллельно вектору поля Е.

    Длина проводников зависит от максимальной длины волны (Лямбда макс) рабочего диапазона и размеров активного полотна антенны, которое не должно выступать за пределы экрана. В плоскости Е рефлектор обязательно должен быть несколько больше половины максимальной длинны волны. Чем толще проводники, из которых делают рефлектор, и ближе они расположены друг к другу, тем меньшая часть энергии, падающей на него, просачивается в заднее полупространство.

    По конструктивным соображениям экран не следует делать очень плотным. Достаточно, чтобы расстояния между проводниками диаметром 3...5 мм не превышали 0,05...0,1- минимальной волны рабочего диапазона. Проводники, образующие экран, можно соединить между собой в любом месте и даже приваривать или припаивать к металлической раме. Если они расположены в плоскости самого рефлектора или за ним, то их влиянием на работу рефлектора можно пренебречь.

    Во избежание дополнительных помех не следует допускать, чтобы проводники (полотна антенны или рефлектора) от ветра терлись либо касались друг друга.

    Один из возможных вариантов антенны с рефлектором показан на рис. 7.

    Ее активное полотно состоит из плоских проводников - планок, а рефлектор - из трубок. Но она может быть полностью металлической. В местах соединений элементов антенны должен быть надежный электрический контакт.

    На значение КБВ в тракте с волновым сопротивлением 75 Ом в значительной мере влияют как ширина планки dпл (или радиус провода) активного полотна антенны, так и расстояние S, на которое оно удалено от экрана.

    С увеличением расстояния S КНД антенны снижается и сужается диапазон частот, в пределах которого направленные свойства з-антенны не претерпевают заметных изменений. Таким образом, с точки зрения улучшения КНД антенны расстояние S желательно уменьшать, а с точки зрения согласования - увеличивать.

    Для крепления полотна антенны к плоскому рефлектору используют стойки. В точках П-П (рис. 6 и 7) стойки могут быть как металлическими, так и диэлектрическими, а в точках У-У-обязательно диэлектрическими.

    В ряде практических случаев приема сигналов по 21-39 каналам телевидения имеющегося коэффициента усиления (КУ) з-антенны c плоским экраном может оказаться недостаточным. Увеличить КУ, как уже говорилось, можно построением антенной решетки, например, из двух или четырех з-антенн с плоским экраном. Есть, однако, другой путь увеличения КУ - усложнение формы рефлектора з-антенны.

    Приводим пример, каким должен быть рефлектор з-антенны, чтобы ее КУ соответствовал значению КУ антенной синфазной решетки, построенной из четырех з-антенн. Этот путь наиболее простой и доступный в любительской практике, чем построение антенной решетки.

    На рисунках антенны размеры всех ее элементов указаны применительно к приему телепрограмм по 21-39 каналам.

    Активное полотно антенны, показанной на рис. 6, выполнено из плоских металлических пластин толщиной 1...2 мм, наложенных друг на друга «внахлест» и скрепленных винтами с гайками. В точках соприкосновения пластин должен быть надежный электрический контакт. Конструктивно активное полотно антенны имеет осевую симметрию, что позволяет прочно закрепить его на плоском экране. Для этого используют стойки-опоры, располагая их в вершинах П-П и У-У квадрата, образуемого пластинами полотна антенны. Точки П-П имеют «нулевой» потенциал по отношению к «земле», поэтому стойки в этих тачках могут быть из любого материала, в том числе металлическими. Точки У-У имеют некоторый потенциал по отношению к «земле», поэтому стойки в этих точках должны быть только из диэлектрика (например, из оргстекла). Кабель (фидер) к точкам а-б питания прокладывают по металлической опоре к одной (нижней) точке П и далее по сторонам полотна антенны (см. рис. 6). Особое внимание следует обратить на ориентацию вектора Е, характеризующего поляризационные свойства антенны. Направление вектора Е совпадает с направлением, соединяющим точки а-б питания антенны. Зазор между "точками а-б должен быть около 15 мм без зазубрин и прочих следов небрежной обработки пластин.

    Основой плоского экрана-рефлектора служит металлическая крестовина, на которой, как на каркасе, размещают активное полотно антенны и проводники экрана. За крестовину антенну в сборе надежно прикрепляют к мачте с таким расчетом, чтобы поднятая она была выше местных мешающих предметов (рис. 8).

    При изготовлении рефлектора типа «усеченный рупор» все стороны плоского рефлектора удлиняют створками и загибают их так, чтобы образовать фигуру по типу «полуразвалившейся» коробки, у которой дно -- плоский экран, а стенки - створки. На рис. 9



    Такой объемный рефлектор показан в трех проекциях со всеми размерами. Сделать его можно из металлических трубок, пластин, проката различного профиля. В точках пересечения металлические стержни должны быть сварены или спаяны. На том же рис. 9 показано и место размещения активного полотна антенны с точками П-П, У-У. Полотно-удалено от плоского рефлектора - донышка усеченного рупора - на 128 мм. Стрелка символизирует ориентацию вектора Е. Почти все проекции стержней рефлектора на фронтальную плоскость параллельны вектору Е. Исключением являются лишь часть силовых стержней, образующих каркас рефлектора. Если рефлектор выполнен из трубок, диаметр трубок силовых стержней может быть 12...14 мм, а остальных - 4...5 мм.

    КНД антенны с рефлектором типа «усеченный рупор» при заданных размерах соизмерим с КНД объемного ромба (1) и изменяется по диапазону частот в пределах 40...65. Это означает, что на верхних частотах рабочего диапазона антенны половина угла раскрыва ее диаграммы направленности составляет около 17°.

    Форма диаграммы направленности антенны, показанной на рис. 9, примерно одинакова для обеих плоскостей поляризации. При установке антенны на местности ее ориентируют на телецентр. Конструкция антенны осесимметрична по отношению к направлению на телецентр, что может стать источником поляризационной ошибки при ее установке на мачту. Здесь надо учитывать, какую поляризацию имеют сигналы, приходящие от телецентра. При их горизонтальной поляризации точки питания а-б антенны должны быть расположены в горизонтальной плоскости, а при вертикальной поляризации - в вертикальной плоскости.

    Литература
    Харченко К., Канаев К. Объемная ромбическая антенна. Радио, 1979, № 11, с. 35-36.
    [email protected]

    Самодельные зигзагообразные телевизионные антенны

    Зигзагообразная телевизионная антенна из трех проводников (Рис. 1) предназначена для приема телесигналов на первых 12 каналах на границе зоны уверенного приема и в зоне полутени. Изготовить телевизионную антенну на один отдельно выбранный телеканал можно ориентируясь на данные табл. 1, а в многоканальном варианте, рассчитанном на прием передач с 1-го по 5-й и с 6-го по 12-й из табл. 2.

    Рис. 1. Наружная зигзагообразная проволочная двухстороннейаправленная антенна:

    1 - штанга антенны; 2 - пластина металлическая; 3 - полотно антенны проволочное; 4 - штырь упорный; 5 - рейка поперечная; 6 - пластина диэлектрическая; 7 - плата крепежная; 8 - фидерная линия; 9 - пластина питання металлическая; 10 - прокладка диэлектрическая.

    Таблица 1. Конструктивные размеры зигзагообразной антенны

    Обозначение размеров, мм Каналы
    1 2 3 4 5 6 7 8 9 10 11 12
    А 6300 5300 4120 3750 3460 1860 1770 1700 1640 1570 1520 1460
    Б 3150 2650 2060 1875 1730 930 885 850 820 785 760 730
    В 260 260 260 260 260 200 200 200 150 150 150 150
    С 3150 2650 2060 1875 1730 930 885 850 820 785 760 730
    а 15 15 10 10 10 10 10 7 7 7 7 7
    b 100 84 64 58 53 28 27 26 25 24 23 22
    d 3 3 3 3 3 3 3 3 3 3 2 2

    Таблица 2. Конструктивные размеры многоканальной зигзагообразной антенны

    Каналы Размеры, мм
    А Б В С а b d
    1-5
    6-12
    3400
    950
    1700
    475
    250
    150
    1700
    475
    10-15
    7-10
    100
    28
    3
    2

    Приемное полотно телевизионной антенны состоит из двух расположенных в одной плоскости ромбических рамок, соединенных параллельно. Для изготовления потребуются: деревянные бруски сечением 50?60 или 60?60 мм, антенный канатик или медный провод диаметром 2,5-3,5 мм, фольгированный гетинакс или стеклотекстолит, паяльник и некоторые вспомогательные материалы.

    Деревянный брусок выбранного сечения, обеспечивающею максимальную прочность конструкции, служит одновременно центральной стойкой антенны и вертикальной мачтой. К этому бруску под углом 90° жестко прикрепляются две поперечные рейки 5, сечение которых может быть меньше, чем центральной стойки, например 40?40 мм. Рейки врезаются в стойку, закрепляются винтом и дополнительно прямоугольной пластинкой 7, изготовленной из диэлектрика.

    К центральной стойке снизу и сверху, а также к концам поперечных реек крепят шесть металлических планок 2, крепление которых к центральной стойке осуществляется без каких-либо изоляторов, но к концам поперечных реек эти планки укрепляются только через изоляционные прокладки.

    На середине антенны, между поперечными рейками, прикрепляется диэлектрическая пластина 6, к которой в свою очередь крепятся две металлические пластины с закругленной кромкой. Полотно антенны состоит из трех параллельно натянутых проводов 3 из медного провода. Для удобства монтажа на всех металлических планках и пластинках 2 и 9 устанавливаются штыри диаметром и высотой 3 мм. Расстояние между штырями зависит от размера между проводниками. Между металлическими пластинами 9 и планкой 6 проложена прокладка из картона или прессшпана.

    Провода натягиваются параллельно друг другу и пропаиваются в местах изгиба к металлическим пластинам 2 у штырей, а также к платам питания 9. Применение проводников большего диаметра, чем 3 мм, приводит не только к утяжелению антенны, но и затрудняет ее монтаж.

    Полотно антенны может быть выполнено также из металлических полосок или трубок. Собрать антенну можно и из отдельных проводников, что облегчает работу над ней. При изготовлении центральной штанги антенны из металлической трубы необходимо предусмотреть возможность изоляции её от полотна антенны.

    Питание антенны осуществляется коаксиальным кабелем 8 с волновым сопротивлением 75 Ом. После натягивания и закрепления полотна антенны прокладывается кабель снижения. Он привязывается к мачте снизу и к одному из проводов антенны. Оплетка кабеля припаивается в точке Е к пластине, соединенной с проводом, к которому он привязан, а центральная жила припаивается к пластине 9. Кабель прокладывается по двум сторонам внутреннего провода одной из ромбических рамок и вводится в антенну в точке нулевого потенциала. Крепление провода к металлическим пластинам может быть выполнено с помощью резьбовых зажимов.

    Иногда при слабом телесигнале не удается получить качественное изображение на экране телевизионного приемника ни на одном принимаемом канале даже при правильной ориентации антенны на ТЦ. Изображение и некачественный звук могут быть существенно улучшены, если применить антенный усилитель, работающий в диапазоне метровых волн, или конвертер, если прием телепрограмм ведется на каналах ДМВ.

    Зигзагообразная широкополосная антенна с рефлектором (рис. 2) предназначена для приема телесигналов на расстоянии 50-60 км от ТЦ. Рефлектор, расположенный с внутренней стороны, увеличивает коэффициент усиления почти в два раза, улучшает направленные свойства антенны и исключает прием сигналов с обратного направления.

    Зигзагообразная телевизионная антенна с рефлектором имеет одностороннюю диаграмму направленности в виде вытянутых эллипсов как в горизонтальной, так и в вертикальной плоскостях, при этом обе диаграммы практически одинаковы. Если изготавливается антенна для более широкого диапазона частот, то диаграмма направленности в вертикальной плоскости сужается и становится меньше, чем в горизонтальной плоскости.

    Рис. 2. Наружная зигзагообразная широкополосная проволочная антенна с рефлектором.

    Рефлектор изготавливается в виде решетки из ряда параллельно расположенных проводников, чем достигается уменьшение массы рефлектора и резкое снижение ветрового сопротивления. При этом длина проводников, образующих ширину рефлектора, определяется следующим образом: l = 0,5l дл.mах. В качестве проводников могут быть использованы тонкостенные трубки диаметром 5-10 мм. Высота рефлектора определяется расстоянием между проводниками (стальными проводами или прутьями), которое зависит от минимальной длины волны рабочих частот t = 0,l l дл.min. Ориентировочно высота рефлектора может быть определена по формуле: H = 0,6l дл.mах. Полотно экрана рефлектора крепится к вертикальной штанге (металлической или деревянной). В верхней и нижней точках антенны действует нулевой потенциал, что позволяет в этих точках закреплять рефлектор металлическими деталями.

    В фидерном устройстве применяется коаксиальный кабель с волновым сопротивлением 75 Ом. Кабель снижения подключается к антенне без УСС. Коаксиальный кабель прокладывается по двум сторонам нижнего ромба антенны от точек питания, далее в нижней части антенны кабель прикрепляется к металлической подставке и по ней идет до рефлектора. затем кабель поднимается по рефлектору вверх до точки, расположенной напротив узла питания антенны, пропускается через рефлектор наружу и образует снижение кабеля до телевизора.

    Прутки или трубки рефлектора крепятся к вертикальной штанге с помощью винтов (скоб или сварки). Для уменьшения массы полотна антенны ее можно изготовить из провода диаметром 2 мм по рекомендациям, изложенным выше.

    Конструктивные размеры телевизионной антенны с рефлектором приведены в табл. 3. Полотно антенны может быть изготовлено как из отдельных проводников, так и из металлических тонкостенных трубок или полосок. Полотно антенны можно разместить на деревянном каркасе из деревянных брусков и реек. Коаксиальный кабель подключается к металлическим платам питания, выполненным в виде закругленных сегментов.

    Таблица 3. Конструктивные размеры широкополосной ЗТА с рефлектором

    Размеры, мм Каналы
    1-5 6-12
    А 3400-4200 1700-2200
    Б 1700-2100 475-600
    Н 3900-4200 1170
    С 1700-2100 475-600
    l 3200 900
    t 300 130
    В 620 175
    d 1 2 2
    d 2 2

    Изготавливать зигзагообразные телевизионные антенны из металлических трубок рекомендуется только для приема телесигналов на высоких частотах 21-39-го каналов. Диаметр проводов антенны определяется так: d = (0,016...0,02)l дл.max. Это значит, что для работы на 1-4-м каналах антенна должна изготавливаться из трубок диаметром 100-120 мм и 50-65 мм для работы на 5-м канале, а для 6-11-го каналов – из труб диаметром 30-35 мм и 20-27 мм – для 12-го канала. Совершенно ясно, что сделать полотно наружной антенны из труб такого диаметра трудно, антенна будет иметь очень большую массу, а учитывая эффект парусности и ветровую нагрузку, конструкция антенны потребует значительного усиления несущих частей. Именно поэтому полотно антенны и изготавливается не из труб, а из нескольких параллельных проводов, которые конечно же можно заменить прутками или металлическими полосками.

    Сварная зигзагообразная антенна из трубок с рефлектором. Если, всё же есть желание изготовить полотно антенны из трубок, можно уменьшить их диаметр, что хотя и снизит электрические параметры антенны, но не значительно и при использовании сварки значительно повысит конструктивную прочность антенны. Один из вариантов такой антенны показан на рисунке 3.



    Рис. 3. Наружная сварная зигзагообразная антенна из тонкостенных трубок с рефлектором

    Таблица 4. Конструктивные размеры сварной ЗТА с рефлектором из трубок

    Размеры, мм Каналы
    1-5 6-12
    А 3400 950
    Б 1700 475
    В 3200 900
    С 1700 475
    А 1 3900 1050
    а 10-15 7-10
    d 15-25 8-15
    d 1 5-8 2-3
    Е 620 175
    Г 100 28

    Сдвоенная рамка изготавливается из отрезков трубок с помощью газовой сварки или пайки по размерам, указанным в табл. 4. Достаточная прочность конструкции рамки достигается жестким креплением сваренных трубок в верхней, нижней и средней частях антенны, где действует нулевой потенциал. В этом случае рамка соединяется с рефлектором с помощью металлических стоек также сваркой и не требует изоляционных прокладок в точках Б и В.

    Кабель снижения прокладывается по металлической штанге антенны и прикрепляется к ней с помощью скоб по внутренней стороне до точки А, лежащей напротив узла питания, далее спускается вниз до точки В и по стойке, соединяющей рамку и рефлектор, до нижней точки соединения трубок.

    С этого момента кабель идет без верхней изоляционной оболочки внутри правой или левой стороны нижней половины рамки до узла питания. Оплетка коаксиального кабеля припаивается в нижней части рамки на входе в трубку, а в узле питания – к одному из соединений трубок. Внутренняя жила коаксиального кабеля припаивается к противоположному стыку двух трубок в узле питания.

    Сварная конструкция антенны хорошо выдерживает внешние механические нагрузки, обеспечивая устойчивый прием волн.

    При изготовлении антенны важное значение имеет расстояние от полотна антенны до полотна рефлектора, которое необходимо выдерживать с достаточной точностью. При использовании металлической мачты полотно рефлектора крепится к ней без изоляторов.

    Двойная треугольная зигзагообразная сварная антенна (рис. 4). Является одной из разновидностей зигзагообразных антенн, её полотно в отличие от рассмотренных ранее антенн отличается тем, что вместо двух ромбов состоит из двух треугольных рамок за счёт чего уменьшается её размер. Диаграмма направленности антенны в горизонтальной плоскости без рефлектора представляет собой восьмерку.



    Рис. 4. Наружная двойная треугольная зигзагообразная сварная антенна из трубок:

    1 - трубка политна антенны; 2 - мачта; 3 - прокладка метоллическая; 4 - плата диэлектрическая: 5 - кабель снижения: 6 - скоба крепления

    Таблица 5. Конструктивные размеры сварной двойной треугольной антенны из трубок

    Каналы Размеры, мм
    А В С а d
    1 2370 2390 1670 20 75
    2 1980 2000 1390 20 63
    3 1510 1530 1060 20 48
    4 1370 1390 964 20 43
    5 1250 1270 880 20 40
    6 661 681 466 20 21
    7 632 652 445 20 20
    8 605 625 426 20 19
    9 580 600 410 20 18
    10 558 578 390 20 17
    11 538 558 378 20 16
    12 518 538 365 20 15

    Кроме формы полотна и размеров, конструктивно она ни чем не отличается от антенн представленных выше. Её так же можно снабдить рефлектором, а полотно изготовить из провода или антенного канатика. Различные варианты конструкции треугольных зигзагообразных антенн представлены на рисунках 4-6, а конструктивные размеры соответственно в таблицах 5-6.



    Рис. 5. Наружная проволочная двойная треугольная антенна:

    1 - плата контактная; 2 - проводник полотна антенны: 3 - мачта; 4 - кабель снижения; 5 - шина заземления, 6 - рейка диэлектрическая; 7 - узел питания антенны; 8 - винт М5?25; 9 - плата питания.

    Таблица 6. Конструктивные размеры ДТЗА из стальных прутков

    Каналы Размеры, мм
    А Б В Г С а b d
    1, 3-5 2390 2120 2540 135 2140 20 1490 3
    2, 5 1980 1760 2120 112 1780 20 1240 3
    3, 6 1660 1470 1770 93 1490 20 1030 3
    4, 6 1430 1270 1510 80 1290 20 890 3
    5-8 1250 1110 1320 70 1130 20 780 3
    5, 9-11 1310 1160 1400 73 1180 20 815 2,5
    6-10 659 585 716 37 605 20 413 2,5
    7-12, 21 635 563 691 36 583 20 396 2
    8-12, 22 610 540 665 35 560 20 380 2
    9-12, 23 586 520 639 33 540 20 365 2
    10-12, 24 557 495 608 31 515 20 350 2
    11, 12, 25-27 535 475 585 30 495 20 336 2
    12, 25-32 518 460 367 29 480 20 324 2



    Рис. 6. Наружная цельносварная двойная треугольная антенна с экраном:

    1 - мачта; 2 - трубка экрана; 3 - стойка соединительная; 4 - вибратор; 5 - шина заземлении; 6 - скоба; 7 - кабель снижения.

    Таблица 7. Конструктивные размеры цельносварной ДТЗА с экраном

    Каналы Размеры. мм
    А Б В Г Д Е К a d d 1
    1-3, 5 2600 2980 2600 2390 1490 1040 260 20 30 10
    2, 5 2170 2480 2170 1980 1240 870 220 20 30 10
    3, 6 1800 2060 1800 1660 1030 720 180 20 25 8
    4, 6 1560 1790 1560 1430 890 625 160 20 25 8
    5-8 1370 1560 1370 1250 780 550 140 18 20 6
    5, 9-11 1430 1630 1430 1310 815 570 145 18 20 6
    6-10 700 826 700 659 413 290 50 15 15 5
    7-12, 21 690 792 690 635 396 277 46 15 14 5
    8-12, 22 665 760 665 610 380 265 44 15 12 4
    9-12, 23 639 730 640 586 365 251 40 15 12 4
    10-12, 24 608 700 610 557 350 240 38 15 10 3
    11, 12, 25-27 585 672 590 535 336 234 35 15 10 3
    12, 25-32 567 648 570 518 324 227 30 15 10 3

    Неполная зигзагообразная антенна (рис. 7) предназначена для приема телесигналов на расстоянии до 50 км от ТЦ. Антенна позволяет принимать программы телевидения в диапазоне частот 1-5-го или 6-12-го каналов. В конструктивном отношении антенна проста, ее высота примерно в два раза меньше, чем у проволочной телевизионной антенны (рис. 1). Как видно из рисунка она представляет из себя лишь нижнюю её часть. Однако для подключеия антенны необходимо применять УСС , например типа ССТФ (рис. 8), которое применяется в широкополосных антеннах всех типов, включая и комнатные. Называется данное УСС симметрирующе-согласующий трансформатор на ферритах (ССТФ). Схема включения обмоток ССТФ показана на рисунке 9. Устройство хорошо работает на всех первых 12 каналах телевидения.

    Рис. 7. Наружная неполная зигзагообразная антенна:

    1 - провод полотна антенны; 3 - планка контактная; 4 - штырь; 5 - штанга несущая; 6 - кабель снижения; 7 - трансформатор согласования типа ССТФ

    Таблица 8. Конструктивные размеры неполной ЗТА

    Каналы Размеры. мм
    А Б В С b а
    1 3150 3150 2228 350 100 15
    2 2650 2650 1874 260 84 15
    3 2060 2060 1460 200 64 15
    4 1875 1875 1325 180 58 15
    5 1730 1730 1225 170 53 15
    6 930 930 660 100 28 12
    7 885 885 625 95 27 12
    8 850 850 600 95 26 12
    9 820 820 580 90 25 10
    10 785 785 555 85 24 10
    11 760 760 538 85 23 10
    12 730 730 516 85 22 10

    Изготавливается ССТФ на высокочастотных ферритовых кольцах марки 50ВЧ с размерами 7?4?2, или марки 1000BH с размерами 7?4?2, или марки 100ВЧ с размерами 8,4?3,5?2. В конструкции трансформатора могут быть использованы два ферритовых кольца со своими обмотками или одно кольцо с двумя обмотками. Каждая обмотка трансформатора содержит восемь витков обмоточного провода, намотанных в два провода. Можно применить обмоточный провод марки ПЭВ-2, ПЭЛ, ПЭЛШО или ПЭВТЛ диаметром 0,23 мм, с изоляцией. Но необходимо иметь в виду, что использование трансформатора на одном ферритовом кольце дает низкий результат. В схему соединений трансформатора введен конденсатор С типа КД-1-1 пФ.

    Рис. 8. УСС типа «симметрирующе-согласующий трансформатор на ферритах»

    Рис. 9. Схема соединений ССТФ с активным вибратором.

    Как следует из схемы (рис. 9), начало обмотки I соединяется с правым плечом вибратора, а ее конец - с внутренней жилой коаксиального кабеля снижения; начало первичной обмотки I, а - с началом обмотки II и заземляется в точке 0 полуволнового вибратора. Конец первичной обмотки I, а соединяется через конденсатор С с внутренней жилой кабеля снижения. Конец обмотки II соединяется напрямую с центральной жилой кабеля снижения. Начало обмотки II, а - со вторым левым плечом вибратора. Конец вторичной обмотки II, а - с концом обмотки I, а и заземляется в точке 0, где антенна крепится к мачте.

    Конструктивные размеры антенны даны в табл. 8. Для улучшения электрических параметров и исключения приема телесигналов с обратного направления антенну можно поставить перед металлическим экраном. При этом экран может быть установлен без механической привязки к конструкции антенны.

    Двенадцатиканальная антенна на обруче (рис. 10) предназначена для приема телесигналов в диапазоне частот от 48,5 до 230 МГц. Такую антенну можно часто увидеть в загородной местности. Радиолюбители еще называют эту антенну «паутинкой» за внешнюю схожесть. Создателем антенны является К. П. Харченко.

    Хорошее качество изображения и звука при применении данной антенны может быть достигнуто при условии, что антенна выполнена на прием всех программ на первых 12 каналах в полном соответствии с чертежами, без отклонений от основных размеров. Антенна может быть использована в районах, отстоящих от мощного ТЦ на расстоянии более 50 км в зоне прямой видимости, а также в зоне полутени. Антенна без рефлектора принимает сигналы с обеих противоположных сторон, так как ее диаграмма направленности имеет вид правильной восьмерки с глубокими провалами с боковых направлений.

    Рис.10. Наружная широкополосная 12-канальная антенна «паутинка»

    Конструктивной основой многоканальной широкополосной антенны является правильный круг, изготовленный из тонкостенной трубки диаметром 10-16 мм. Лучше применить медную или латунную трубку (в крайнем случае можно использовать стальную или дюралюминиевую). Это требование объясняется тем, что к этому обручу впоследствии должны быть припаяны радиальные проводники, чтобы создать соединение без переходного сопротивления. Пайка к стальной или дюралюминиевой трубке в условиях домашней мастерской затруднена (в этом случае добиться прочного соединения можно только сваркой в среде нейтрального газа, например аргона).

    Вместо тонкостенной трубки можно применить металлическую полосу, сварить ее встык и укрепить ребром жесткости. Для изготовления антенны необходимо разместить обруч и просверлить отверстия для укрепления в них радиальных проводников. Кольцо делится на две равные части и размечается, образуя горизонтальную диагональ. От размеченных точек Г и Д откладываются в обе стороны углы деления круга на сектора так, чтобы получилось восемь секторов с центральным углом 35° каждый. Расстояние между точками Е и Ж регламентируется выбранным каналом. Для 1-го канала расстояние между точками Е и Ж приблизительно равно 800 мм. С увеличением номера канала это расстояние уменьшается. Для 1-го канала телевидения внешний диаметр кольца равен 2992 мм.

    Таблица 9. Размеры элементов двенадцатиканальной антенны на обруче

    Каналы Размеры, мм Длина волны,
    соответствующая
    средней частоте
    канала, м
    L D D 1 D 2 d а
    1 7200 120 110 2292 3 40 5.72
    2 6120 120 110 1948 3 40 4.84
    3 4750 120 110 1512 3 40 3.75
    4 4320 120 110 1375 3 40 3.41
    5 3600 120 110 1146 2.5 38 3.13
    6 2160 120 110 688 2.5 38 1.68
    7 2030 120 110 646 2.5 36 1.61
    8 1950 120 110 620 2.5 36 1.55
    9 1865 120 110 594 2 35 1.48
    10 1800 120 110 575 2 35 1.43
    11 1730 120 110 550 2 35 1.37
    12 1660 120 110 530 2 35 1.32

    После разметки с внутренней стороны кольца сверлятся десять отверстий диаметром 3-3,2 мм. При этом в каждой половине кольца эти отверстия располагаются на равном расстоянии друг от друга. В отверстия вставляются концы радиальных проводов, которые закручиваются и потом припаиваются. Основным элементом антенны является узел питания, который располагается точно в центре антенны. Узел питания состоит из диэлектрического основания, выполненного в виде круга диаметром D, двух накладок 8, изготовленных в виде секторов, такого же диаметра, как и основание, и двух накладок для увеличения жесткости конструкции. Основание изготавливается из диэлектрического материала, например оргстекла. Контактные накладки 8 делаются из латуни толщиной 2 мм. В каждую пластину вклепывается по пять штифтов из медного провода диаметром d. Пластины прикрепляются к основанию с помощью трех винтов с гайками М5. Радиальные проводники 6 прикрепляются к штырям и припаиваются. Перед пайкой этих проводников узел питания прикрепляется к деревянному бруску 10 высотой 100 мм с помощью двух винтов 9. Перед монтажом кольцо закрепляется на мачте в точках Б и В без изоляционных прокладок, так как в этих точках антенна имеет нулевой потенциал.

    Радиальные проводники 6, кольцо 1 и пластины 8 узла питания образуют правый и левый сектора антенны, симметричные относительно мачты. В этих секторах к радиальным проводникам на равном расстоянии друг от друга припаиваются по пять рядов поперечных проводников. Изготавливаются все проводники из медного провода диаметром d или из антенного канатика.

    Фидер изготавливается из коаксиального кабеля с волновым сопротивлением 75 Ом. От телевизора кабель снижения прокладывается по мачте, к которой он или привязывается, или закрепляется хомутиками. В точке В кабель привязывается к мачте и к кольцу, затем прокладывается по кольцу левого сектора антенны до точки Г, где его закрепляют и поворачивают к центру антенны.

    Для того чтобы кабель не провисал и не болтался при порывах ветра, его прикрепляют липкой лентой через каждые 150 мм. Центральная жила коаксиального кабеля прикрепляется с помощью пайки или под винт к правой пластине питания 8, а оплетка кабеля точно так же прикрепляется к левой пластине питания. Узел питания после монтажа необходимо закрыть пластмассовой крышкой.

    Коаксиальный кабель припаивается непосредственно к антенне без УСС, так как основные электрические параметры антенны согласованы с входными параметрами телевизора.

    Если мачта антенны изготовлена из деревянного бруска, то необходимо проложить провод заземления, замкнув его в точках Б и В.

    Зигзагообразные активные антенны ДМВ

    Для приема телевизионных сигналов в диапазоне ДМВ, особенно в неблагоприятных условиях, необходимо использовать хорошие антенны с антенными усилителями, т. е. активные антенны. Об опыте постройки таких антенн и рассказывает автор публикуемой статьи.

    В диапазоне ДМВ применение эффективных антенно-фидерных систем (АФС) для приема сигналов в сложных условиях не потеряло своей актуальности. Относительно малая длина λ этих волн позволяет создавать высокоэффективные антенны при сравнительно небольших размерах.

    После длительных экспериментов с разными антеннами за основу была взята известная зигзагообразная антенна , показанная на рис. 1. Конструктивно в классическом виде полотно антенны состоит из двух одинаковых ромбовидных частей, повернутых одна относительно другой на 180°. Следовательно, такая антенна симметрична. Эта особенность допускает применение антенных усилителей (АУ) с симметричным входом и большим усилением, например, пластинчатых усилителей (ПАУ) SWA и др. .

    Усиление зигзагообразной антенны зависит от отношения l/λ, а ее входное сопротивление - от отношений l/d и l/λ. Максимальное усиление достигается при длине l = 0,375λ, но при этом оно сильно зависит от диаметра провода.

    При l = 0,25λ усиление получается, конечно, меньше, но и зависимость от диаметра провода уменьшается.

    При изменении угла α изменяются габариты полотна. Так, если α = 90°, то SH = 2√2l = 2,83l; SE = l√2 = 1,41l, а если α = 120°, то SH = 2l; SE = 1,73l. Это необходимо учитывать при создании сложных АФС (об этом дальше). Основные размеры полотна антенны, например, для 29-го канала сведены в табл. 1. Следует также иметь в виду и то, что с уменьшением диаметра провода и увеличением периметра полотна усиление растет. Кроме того, при выборе более тонкого провода уменьшается парусность антенны.

    Различные конструктивные исполнения антенны имеют разные входные сопротивления (табл. 1). Следовательно, необходимы и разные способы согласования симметричного входа полотна с симметричным входом АУ, имеющим входное сопротивление 300 Ом. Они показаны на рис. 2 .


    При входном сопротивлении полотна 300 Ом АУ, конечно, можно подключить непосредственно к точкам а - а. Однако для увеличения усиления и направленного действия антенны полотно обычно используют вместе с рефлектором (о нем будет рассказано ниже). Поэтому АУ лучше установить за рефлектором, соединив с полотном симметричной линией с волновым сопротивлением 300 Ом так, как показано на рис. 2,а - для воздушной линии, на рис. 2,6 - для кабеля КАТВ или на рис. 2,в - для кабеля РК-150. В последнем случае оплетки двух отрезков кабеля спаивают одну с другой на концах.

    Во всех случаях необходимо учитывать коэффициент укорочения линии К. Для воздушной линии из проводов (рис. 2,а) - К=0,975, для КАТВ (рис. 2,6) - К = 0,8, для кабеля РК-150 (рис. 2,в) - К = 0,75...0,86 в зависимости от типа кабеля.

    Наиболее удобно (по мнению автора) использовать полотно с входным сопротивлением 75 Ом. В этом случае для согласования можно применить четвертьволновый согласующий трансформатор из линии с волновым сопротивлением 150 Ом так, как изображено на рис. 2, г. Он образован двумя отрезками кабеля РК-75 длиной 0,25λKn, где n - нечетное число. Коэффициент К равен 0,65789 для кабеля с полиэтиленовой изоляцией. Размеры трансформатора даны по спаянным на концах оплеткам.

    Формула для расчета трансформатора известна:

    Zтр = √Zвх · Zвых ,

    поэтому и получается

    Zтр = √75 · 300 = 150 Ом.

    Разомкнутый согласующий шлейф, показанный на рис. 2,д, и четвертьволновый трансформатор (рис. 2,е) позволяют согласовать АУ и антенну с входным сопротивлением, равным менее 300 Ом. Для изготовления шлейфа используют графики в . Ориентировочные коэффициенты для расчета шлейфа и параметры четвертьволнового трансформатора указаны в табл. 2. Основное требование для шлейфа - Zл = Zш = 300 Ом. Размеры шлейфа и соединительной линии связаны соотношением А = В + С.


    На рис. 2,д представлен способ подключения полотна с Rвх = 100 Ом к АУ с Rвх = 300 Ом, причем В = 0,13λК, а С = 0,09λК. Для подключения используют симметричный кабель КАТВ (SLX-300) или воздушную линию с волновым сопротивлением 300 Ом. Для второго случая отношение (D/d) = 6,11. При использовании провода диаметром 3,569 мм расстояние между осями проводов равно D = 21,8 мм. Для сохранения фиксированного расстояния между проводами вдоль линии размещают несколько поперечных распорок из высококачественных изоляционных материалов, не ухудшающих свойств при воздействии окружающей среды (фторопласт, полиэтилен, органическое стекло). Следует иметь в виду, что, перемещая шлейф в точках в - в и изменяя тем самым размер С, можно добиться более четкого изображения на экране телевизора.

    Четвертьволновый трансформатор можно изготовить из трубок диаметром более 10 мм, как на рис. 2,е. При меньшем диаметре зазор между трубками будет очень мал, что затруднит изготовление трансформатора.

    Приведем пример расчета полотна для 29-го канала. При Fиз = 535,25 МГц найдем λиз = 300 000/Fиз = 560,48 мм. Если Rвх = 75 Ом и α = 90°, размер стороны ромбовидной части (см. табл. 1) равен l = 0,29λ = 162,5 мм, α (l/d) = 32...75. Следовательно, диаметр провода полотна равен 2,1...5,1 мм. Можно применить полоски шириной 2d, т. е. 4,2...10,2 мм, из меди или дюралюминия.


    Отметим, что на всех последующих рисунках размеры даны для 29-го канала. Пересчет на другие каналы не сложен: зная отношение частоты 29-го канала к частоте определяемого канала, известные размеры умножают на это отношение.

    Конечно, полотно антенны, кроме ромбовидных частей, может представлять собой и другие формы, например, зигзагокольцеобразную со сплошными металлическими секторами, как показано на рис. 3.

    В зависимости от угла β полотно имеет различное входное сопротивление. Например, при β = 90° оно равно Rвх = 100 Ом, а при β = 140° - Rвх = 75 Ом. Это определяет и разные способы согласования полотна с АУ. Так, полотно при β = 90° более широкополосно и согласуется шлейфом в соответстви и с рис. 2, д. При β = 140° антенна будет более узкополосной из-за необходимости применения четвертьволнового согласующего трансформатора по рис. 2, г.

    Для изготовления такого полотна используют пластины из латуни толщиной 0,3 мм. С целью уменьшения парусности полотна в каждом секторе сверлят по 15-20 отверстий диаметром 5 мм с равномерным распределением по площади.

    Размеры шлейфа для согласования по рис. 2, д следующие: В=60 мм, С=40 мм, отрезки в - с кабеля КАТВ могут быть длиной 224n мм, где n=1,2,3.... Четвертьволновый трансформатор из кабеля РК-75 при согласовании по рис. 2, г может иметь длину 92,18n мм, где n = 1,3,5,7....

    По табл. 1 можно выбрать любое полотно из 25 предложенных исходя из наличия материалов или других характеристик.

    Диаграмма направленности полотна антенны (без рефлектора) - двухлепестковая вида "восьмерки", поэтому применение рефлектора во всех случаях целесообразно и эффективно, так как улучшает направленные свойства и повышает усиление антенны примерно на 3 дБ при конструктивном исполнении рефлектора, аналогичном полотну. Однако более эффективный способ увеличения усиления антенны примерно на 7 дБ - установка рефлекторной решетки или сетки с мелкими ячейками. Решетка/сетка должна быть сварной и иметь антикоррозионное покрытие. Размеры решетки/сетки должны быть на 5...10 % больше вертикального (Sн) и горизонтального (SE) размеров полотна.

    Решетку/сетку располагают на расстоянии h=100...50 мм позади полотна в зависимости от принимаемого канала (21-69). Значение h влияет на входное сопротивление полотна и может служить дополнительным способом улучшения согласования всей АФС. Изменяя h при размещении решетки на резьбовых шпильках, добиваются более четкого изображения с наименьшим уровнем шумов ("снега") на экране телевизора.

    Использование рефлекторной решетки/сетки изменяет диаграмму направленности антенны, превращая ее в узкую однолепестковую. В результате прием со стороны рефлектора значительно ослаблен, что повышает помехозащищенность АФС.

    Еще большего увеличения направленного действия и усиления антенны можно добиться, если применить синфазное включение двух и более полотен - синфазные решетки. Это позволяет принимать передачи на значительном расстоянии и в сложных условиях. Такие антенны представляют собой несколько параллельно включенных полотен, разнесенных по горизонтали или (и) по вертикали в одной плоскости.

    Для примера на рис. 4 представлено синфазное включение двух полотен с входным сопротивлением 150 Ом, разнесенных по вертикали. Изображенное на рисунке полотно можно считать модификацией зигзагокольцеобразной антенны с углом β = 0 или разновидностью кольцевой. Антенна хорошо работает в диапазоне ДМВ при диаметре провода всего 1,5 мм.


    Способы согласования такой антенны с АУ могут быть различными. Так, на рис. 4 показан вариант включения двух полотен, расположенных на оптимальном расстоянии 0,7λ по вертикали, с линией питания, подключенной к нижнему полотну (зтажу). Для связи между этажами использована двухпроводная линия длиной λК. Линия образована двумя отрезками кабеля РК-75 (К=0,65789). Она симметрична и имеет волновое сопротивление 150 Ом, что обеспечивает хорошее согласование с полотном.

    В результате такого параллельного соединения двух одинаковых полотен входное сопротивление всей АФС в точках а - а1 получается равным 75 Ом. Согласование с АУ сделано четвертьволновым согласующим трансформатором по рис. 2,г. образованным двумя отрезками кабеля РК-75.

    Для объединения полотен при центральном питании между ними включают две последовательно соединенные симметричные линии по рис. 2,в длиной 0.5ХК (184,4 мм по спаянным оплеткам на концах), но образованных отрезками кабеля РК-75. При этом в центральных точках в - в получается входное сопротивление антенны 75 Ом. К ним и подключают тот же четвертьволновый согласующий трансформатор, что и на рис. 4.

    Аналогично используют полотна по рис. 1 с углом α = 120°. Если применены такие полотна с углом α = 90°, то лучше их разнести по горизонтали.

    Синфазное включение трех одинаковых полотен по рис. 1 с центральным питанием изображено на рис. 5. Решетка снабжена рефлекторной сеткой. Входное сопротивление каждого полотна равно около 100 Ом и слабо зависит от диаметра провода. Для проверки были использованы провода диаметром 1,2 [(l/d) = 117] и 2,76 [(l/d) = 51] мм. Размеры соединительных линий λК останутся те же, если использовать и другие полотна с Rвх = 100 Ом (по рис. 1 при α = 120° или по рис. 3 при β = 90°).


    Полотна соединяют между собой параллельно симметричными линиями с волновым сопротивлением 100 Ом, образованными отрезками кабеля РК-50 длиной (по спаянным оплеткам), равной λК (это условие - обязательное!). В точках в - в общее входное сопротивление антенны равно 33,3 Ом. Согласование с АУ обеспечивается четвертьволновым трансформатором из отрезков кабеля РК-50 (по рис. 2,г) длиной 277 мм.

    Все полотна закрепляют на планке из органического стекла толщиной 5 мм. К рефлектору и мачте планка закреплена четырьмя резьбовыми шпильками в точках 0. Рефлекторную сетку (ячейки с размерами 18x18 мм) удаляют от полотна антенны на расстояние h = 105 мм, изменяемое на ±15 мм.

    Как уже было выше сказано, АУ устанавливают за рефлектором на мачте и подключают к полотну в точках с - с. Блок питания (БП) АУ размещают рядом с телевизором или на его задней стенке так, как показано на рис. 6.


    Постоянное напряжение 12 В с БП поступает по кабелю снижения РК-75 через развязывающее устройство (РУ), включенное в соответствии с рис. 7. РУ состоит из дросселя L1 и конденсатора С2.

    Обычно ПАУ типов SWA, GPS и др. питают от маломощных БП, которые имеют различные схемные решения, но чаще всего не защищены от короткого замыкания в нагрузке. А такая защита необходима. Кроме того, если прием телевизионных сигналов происходит с разных направлений, например, на две антенны, то переключение кабелей от антенн на входе телевизора вносит ряд неудобств, причем быстро изнашиваются разъемы. Поэтому желательно предусмотреть их автоматическое переключение.

    Для устранения указанных недостатков были разработаны различные БП АУ. Принципиальная схема одного из вариантов БП с применением реле для автоматического переключения антенн представлена на рис. 8. Прием сильных сигналов ДМВ обеспечивает антенна А1 без АУ, подключенная к гнезду XW2, причем БП в этом случае выключен. Для приема слабых сигналов подключается антенна А2 (XW3) с АУ, что происходит при включении БП.


    БП включается при нажатии на кнопку SB1. При этом срабатывает реле К1 и его контакты К1.1 блокируют кнопку SB1, удерживая БП включенным. Контакты К1.2 отключают антенну А1 и подключают антенну А2 к телевизору. Выпрямленное напряжение, индицируемое светодиодом HL2, с выхода БП проходит на АУ.

    При коротком замыкании в АУ или фидере напряжение на выходе БП и ток через обмотку К1 реле упадут. Реле отпустит контакты К1.1, которые выключат БП. Светодиод HL2 и лампа HL1 погаснут.

    Резистор R1 подбирают так, чтобы при стабилизированном напряжении 12В обеспечить четкое срабатывание реле при минимальном токе через его обмотку. Реле может быть любое, например, РЭС47 (паспорт РФ4.500.409). Лампа HL1 (6,3 В х 0,28 А) индицирует включение БП по сети и одновременно служит предохранителем в первичной цепи трансформатора Т1. Трансформатор - любой с напряжением на обмотке II - 9...11 В. Дроссель L1 - также любой, например, ДМ-0,6. Микросхема КР142ЕН8Б обеспечивает максимальный ток 1,5 А и имеет защиту от перегрузок по току. Однако БП потребляет не более 0,1 А, поэтому можно применить менее мощную микросхему, например, 78L12.

    Для приема сигналов в диапазоне ДМВ в журнале рассмотрено несколько АУ, например, . Все они имеют входное сопротивление 75 Ом. Их тоже можно использовать с описанными антеннами с симметричным входом. Для этого нужно применить известное согласующее симметрирующее устройство (ССУ) на ферритовом кольце, включаемое по схеме на рис, 9,а. Но можно установить ССУ в виде U-петли по рис. 9,б. Кабель, идущий к АУ, должен быть коротким и лучше длиной 0.5λК.

    Выбирая место установки антенны, необходимо помнить, что каждый лишний метр кабеля снижения ослабит сигнал в диапазоне ДМВ на 0,16...0,4 дБ. Чем тоньше кабель, тем больше потери. При окончательном монтаже АФС желательно устанавливать новый кабель, так как к концу его срока хранения (он определен в 12 лет) коэффициент затухания увеличивается на 30...60%. Кабель лучше выбирать более высокочастотный, с большим диаметром центрального проводника. Следует также обеспечить надежную гидроизоляцию в местах пайки.

    Литература

    1. Харченко К. Зигзагообразная антенна. - Радио, 1961, № 3; 1999, № 8.
    2. Пахомов А. Антенные усилители SWA. - Радио, 1999, № 1, с. 10-12.
    3. Пахомов А. Новые антенные усилители. - Радио, 2000, № 7.
    4. Ротхаммвль К. Антенны. - М.: Энергия, 1969.
    5. Нечаев И. Антенный усилитель ДМВ на микросхеме. - Радио, 1999, № 4, с. 8.