Проектирование и строительство домов

Проектирование и строительство домов

» » Генератор пилообразных импульсов схема. Релаксационный генератор пилообразного напряжения, сигнала, пилы

Генератор пилообразных импульсов схема. Релаксационный генератор пилообразного напряжения, сигнала, пилы

Доброго дня уважаемые радиолюбители! Приветствую вас на сайте “ “

Собираем генератор сигналов – функциональный генератор. Часть 1.

На этом занятии Школы начинающего радиолюбителя мы с вами продолжим наполнять нашу радиолабораторию необходимым измерительным инструментом. Сегодня мы начнем собирать функциональный генератор . Данный прибор необходим в практике радиолюбителя для настройки различных радиолюбительских схем – усилителей, цифровых устройств, различных фильтров и множества других устройств. К примеру, после того как мы соберем этот генератор, мы сделаем маленький перерыв в ходе которого изготовим простое светомузыкальное устройство. Так вот, что бы правильно настроить частотные фильтры схемы, нам как раз очень пригодится этот прибор.

Почему данный прибор называется функциональный генератор, а не просто генератор (генератор низкой частоты, генератор высокой частоты). Прибор, который мы изготовим, генерирует на своих выходах сразу три различных сигнала: синусоидальный, прямоугольный и пилообразный. За основу конструкции мы возьмем схему С. Андреева, которая опубликована на сайте в разделе: Схемы – Генераторы .

Для начала нам необходимо внимательно изучить схему, понять принцип ее работы и собрать необходимые детали. Благодаря применению в схеме специализированной микросхемы ICL8038 которая как раз предназначена для построения функционального генератора, конструкция получается довольно-таки простой.

Конечно, цена изделия зависит и от производителя, и от возможностей магазина, и от многих других факторов, но в данном случае мы преследуем одну цель: найти необходимую радиодеталь, которая была бы приемлемого качества и главное – по карману. Вы наверное заметили, что цена микросхемы сильно зависит от ее маркировки (АС, ВС и СС). Чем дешевле микросхема, тем хуже ее характеристики. Я бы порекомендовал остановить свой выбор на микросхеме “ВС”. У нее характеристики не очень сильно отличаются от “АС”, но намного лучше чем у “СС”. Но в принципе, конечно, пойдет и эта микросхема.

Собираем простой функциональный генератор для лаборатории начинающего радиолюбителя

Доброго вам дня уважаемые радиолюбители! Сегодня мы продолжим собирать наш функциональный генератор . Чтобы вам не скакать по страницам сайта, еще раз выкладываю принципиальную схему функционального генератора , сборкой которого мы и занимаемся:

А так же выкладываю даташит (техническое описание) микросхем ICL8038 и КР140УД806:

(151.5 KiB, 6,245 hits)

(130.7 KiB, 3,611 hits)

Я уже собрал необходимые детали для сборки генератора (часть у меня была – постоянные сопротивления и полярные конденсаторы, остальные куплены в магазине радиодеталей):

Самыми дорогими деталями оказались микросхема ICL8038 – 145 рублей и переключатели на 5 и 3 положения – 150 рублей. В общей сложности на эту схему придется потратить около 500 рублей. Как видно на фотографии, переключатель на пять положений – двухсекционный (односекционного не было), но это не страшно, лучше больше, чем меньше, тем более, что вторая секция нам возможно пригодится. Кстати, эти переключатели абсолютно одинаковые, а количество положений определяется специальным стопором, который можно установить на нужное число положений самому. На фотографии у меня два выходных разъема, хотя по идее их должно быть три: общий, 1:1 и 1:10 . Но можно поставить небольшой переключатель (один выход, два входа) и коммутировать нужный выход на один разъем. Кроме того хочу обратить внимание на постоянный резистор R6. Номинала в 7,72 МОм в линейке мегаомных сопротивлений нет, ближайший номинал – 7,5 МОм. Для того, чтобы получить нужный номинал придется использовать второй резистор на 220 кОм, соединив их последовательно.

Хочу обратить ваше внимание также на то, что сборкой и наладкой этой схемы собирать функциональный генератор мы не закончим. Для комфортной работы с генератором мы должны знать какая частота генерируется в данный момент работы, или нам бывает необходимо установить определенную частоту. Чтобы не использовать для этих целей дополнительные приборы, мы оснастим наш генератор простым частотомером.

Во второй части занятия мы с вами изучим очередной способ изготовления печатных плат – методом ЛУТ (лазерно-утюжный). Саму плату мы будем создавать в популярной радиолюбительской программе для создания печатных плат SPRINT LAYOUT .

Как работать с этой программой, я вам пока объяснять не буду. На следующем занятии, в видео файле, покажу как создать нашу печатную плату в этой программе, а также весь процесс изготовления платы методом ЛУТ.

Принцип работы релаксационного генератора основан на том, что конденсатор заряжается до определенного напряжения через резистор. При достижении нужного напряжения открывается управляющий элемент. Конденсатор разряжается через другой резистор до напряжения, при котором управляющий элемент закрывается. Так напряжение на конденсаторе нарастает по экспоненциальному закону, затем убывает по экспоненциальному закону.

Подробнее о том, как происходит заряд и разряд конденсатора через резистор , можно прочитать по ссылке.

Вашему вниманию подборка материалов:

Применение в релаксационных генераторах транзисторных аналогов динистора является типичным, так как для расчета и точной работы этого генератора необходимы строго определенные параметры динистора. Некоторые из этих параметров у промышленных динисторов либо имеют большой технологический разброс, либо вообще не нормируются. А сделать аналог со строго заданными параметрами не составляет труда.

Схема генератора пилообразного напряжения

Релаксационный генератор выглядит так:

(A1) - релаксационный генератор на диодном тиристоре (динисторе), (A2) - в схеме A1 динистор заменен на транзисторный аналог. Рассчитать параметры транзисторного аналога в зависимости от используемых транзисторов и номиналов резисторов можно .

Резистор R5 выбирается небольшим (20 - 30 Ом). Он предназначен для ограничения силы тока через динистор или транзисторы в момент их открытия. В расчетах влиянием этого резистора мы пренебрежем и будем считать, что на нем практически не падает напряжение, а конденсатор через него разряжается мгновенно.

Параметры динистора, применяемые в расчетах, описаны в статье вольт-амперная характеристика динистора .

[Минимальное напряжение на выходе, В ] =

[Максимальное напряжение на выходе, В ] =

Расчет сопротивления резистора R4

Для резистора R4 должны выполняться два соотношения:

[Сопротивление R4, кОм ] > 1.1 * ([Напряжение питания, В ] - [Напряжение запирания динистора, В ]) / [Ток удержания, мА ]

Это необходимо для того, чтобы динистор или его аналог надежно запирались, когда конденсатор разрядится.

[Сопротивление R4, кОм ] Напряжение питания, В] - [Напряжение отпирания динистора, В ]) / (1.1 * [Ток отпирания, мА ])

Это необходимо для того, чтобы конденсатор мог зарядиться до напряжения, необходимого для отпирания динистора или его аналога.

Коэффициент 1.1 выбран условно из желания получить 10% запас.

Если два этих условия вступают в противоречие друг с другом, то это означает, что выбрано слишком низкое напряжение питания схемы для данного тиристора.

Расчет частоты релаксационного генератора

Приблизительно оценить частоту генератора можно из следующих соображений. Период колебаний равен сумме времени заряда конденсатора до напряжения отпирания динистора и времени разряда. Мы договорились считать, конденсатор разряжается мгновенно. Таким образом, нам нужно оценить время заряда.

Второй вариант: R1 - 1 кОм, R2, R3 - 200 Ом, R4 - подстроечный 3 кОм (установлен на 2.5 кОм), Напряжение питания - 12 В. Транзисторы - КТ502 , КТ503 .

Требования к нагрузке генератора

Приведенные релаксационные генераторы могут работать с нагрузкой, имеющей высокое входное сопротивление, чтобы выходной ток не влиял на процесс зарядки и разрядки конденсатора.

[Сопротивление нагрузки, кОм ] >> [Сопротивление резистора R4, кОм ]

Электронным генератором называют устройство для формирования незатухающих электрических колебаний различной формы, частоты и мощности. Очень часто генераторы выполняют на основе ОУ.

Мультивибратор

Мультивибратором называют генератор напряжения с формой, близкой прямоугольной. Его название отражает тот факт, что такое напряжение при разложении в ряд Фурье представляется рядом, содержащим много высших гармоник (мульти – много).

По характеристике ОУ (см. рис. 2.13, б) видно, что выходное напряжение усилителя линейно зависит от входного только в очень узком диапазоне – сотнях микровольт. Если входное напряжение выходит за пределы этого диапазона, то выходной сигнал может принимать только два значения: +UВЬ1Х (≈ +12 В) и -UВЬ1Х (≈ -12 В). На этой особенности операционного усилителя основан принцип формирования прямоугольного напряжения мультивибратора (рис. 2.20, а).

Рис. 2.20. Мультивибратор (а) и графики, поясняющие его работу (б)

Предположим, что в момент включения между входами усилителя небольшая (достаточно единиц милливольт) отрицательная разность потенциалов. При этом на выходе сформируется напряжение + UВЫХ, а на неинвертирующий вход с делителя R 1, R 2 будет подан положительный потенциал +U n. Конденсатор начнет заряжаться по цепи "Uвых–R3–С–корпус", стремясь достичь потенциала + Uвых. Потенциал на инвертирующем входе начнет расти до тех пор, пока не превысит потенциал на неинвертирующем входе +U D. В этот момент усилитель сформирует на выходе отрицательное напряжение -U выx и создаст на неинвертирующем входе отрицательный потенциал -U D. Теперь конденсатор начнет перезаряжаться, стремясь достичь потенциала -U выx. Однако как только потенциал на инвертирующем входе станет ниже потенциала на неинвертирующем входе -U D, усилитель сформирует на выходе положительное напряжение +U выx. Такой скачкообразный процесс изменения выходного напряжения с +U вых до -U вых и обратно будет повторяться до тех нор, пока с операционного усилителя не будет снято питающее напряжение. Графики, демонстрирующие описанные процессы, показаны на рис. 2.20, б. Период Г-колебаний определяется постоянной времени заряда конденсатора τ = R 3C, а также тем, насколько потенциал, формируемый делителем R 1, R 2, меньше напряжения Uвых.

Генератор пилообразного напряжения

Напряжение на конденсаторе прямолинейно возрастает, если его заряжать постоянным током, не зависящим от напряжения на нем, и предотвратить влияние на этот ток сопротивления нагрузки, т.е. должно выполняться условие R н >>R. Интегрируя по времени выражение

Условие I c = const в схеме генератора пилообразного напряжения (ГПН) на основе ОУ (рис. 2.21, а) обеспечивается постоянным напряжением Uвх. Пока транзистор заперт, в течение времени t п происходит зарядка конденсатора и напряжение на нем нарастает по прямой. Усилитель, стремясь сделать разность потенциалов на его входах, близкой к нулю, формирует выходное напряжение, повторяющее напряжение на конденсаторе. При подаче импульса Uразр транзистор открывается, и конденсатор быстро разряжается через него за время t разр, после чего процесс зарядки повторяется. Выходное напряжение схемы приобретает пилообразную форму, которая сохраняется до тех пор, пока значение напряжения располагается внутри диапазона от -Uвых до +Uвых.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Департамент образования, науки и молодежной политики

Воронежской области

ГОБУ СПО ВО «Борисоглебский техникум промышленных и информационных технологий»

Курсовой проект

по дисциплине: «Проектирование цифровых устройств»

Тема: «Генератор пилообразного напряжения»

Борисоглебск 2015.

Введение

В наши дни большое место в мире радиоэлектронной аппаратуры занимают телевизионные приемники. Телевидение самая широкая область радиоэлектроники. Сейчас в каждом доме есть телевизор, и он является самым основным источником информации. При конструировании телевизионного приемника согласуются с десятками наук и тем радиоэлектроники. А одной из основных наук является «Импульсная техника» и тема: «Генераторы пилообразного напряжения или тока». В телевизоре это блоки развертки - строчной и кадровой. Генераторы пилообразного напряжения (ГПН) используются также в развертывающих устройствах осциллографа. Генераторы данного вида используются также при ремонте настройке и наладке различного оборудования оргтехники. Тема курсового проекта «Генератор пилообразного напряжения» крайне важна и актуальна, так как данное устройство необходимо на каждом рабочем месте наладчика электронной аппаратуры.

1 . Анализ аналогов генератора пилообразного напряжения.

1.1 Анализ аналога генератора пилообразного напряжения 1

1.1.1 Принципиальная схема

В качестве первого аналога рассмотрим генератор пилообразного напряжения на транзисторах

Рис. 1 - Принципиальная схема ГПН

Генератор (см. рис 1) обеспечивает получение пилообразного напряжения с хорошей линейностью. Пилообразное напряжение снимают непосредственно с конденсатора С2. На резисторе R2 в моменты разряда конденсатора возникают импульсы, которые могут быть использованы для синхронизации.

1.1.2 Принцип работы схемы ГПН

Транзистор Т1 генератора с резистором R1 в цепи эмиттера представляет собой источник тока с выходным сопротивлением, равным нескольким мегомам. Током этого источника заряжается конденсатор С2.

Ввиду большого выходного сопротивления источника тока обеспечивается хорошая линейность напряжения заряда.

Когда напряжение на конденсаторе С2 достигает величины, при которой открывается однопереходный транзистор Т2, происходит быстрый разряд конденсатора.

Частота повторения колебаний регулируется резистором R3 (регулировкой тока заряда конденсатора С2). Эта частота не зависит от колебаний напряжения питания, поскольку и напряжение, при котором открывается транзистор Т2, и ток заряда при этом изменяются пропорционально, компенсируя влияние друг друга на частоту повторения.

Пилообразное напряжение снимают непосредственно с конденсатора С2. На резисторе R2 в моменты разряда конденсатора возникают импульсы, которые могут быть использованы для синхронизации.

При номиналах деталей, указанных на схеме, частота повторения может изменяться в пределах 0,1--4 кГц; размах пилообразного напряжения составляет 10 В, амплитуда синхронизирующих импульсов -- 5 В.

1.1.3 Функциональная схема ГПН

Анализируя принципиальную схему, функционально ее можно разбить на 3 основные части.

Рис. 2 - Части принципиальной схемы

Рис. 3 - Функциональная схема ГПН

РЧК - Регулировка частоты колебаний

ИТ - Источник тока с вых. сопротивлением несколько МОм

1.2 Анализ аналога генератора пилообразного напряжения на микроконтроллере

1.2.1 Принципиальная схема ГПН

Принципиальная схема индикатора выглядит следующим образом:

Рис. 4 - Принципиальная схема ГПН

1.2.2 Принцип работы ГПН

Формирование пилообразного напряжения происходит на конденсаторе C1, зарядный ток которого определяется резисторами R1-R2 и (в гораздо меньшей степени) параметрами транзисторов токового зеркала VT1-VT2. Довольно большое внутреннее сопротивление источника зарядного тока позволяет получить высокую линейность выходного напряжения (фото ниже; масштаб по вертикали 10В/дел).

Основной технической проблемой в таких схемах является цепь разряда конденсатора C1. Обычно для этой цели используются однопереходные транзисторы, туннельные диоды и пр. В приведенной схеме разряд производится... микроконтроллером. Этим достигается простота налаживания устройства и изменения логики его работы, т.к. подбор элементов схемы заменяется адаптацией программы микроконтроллера.

Рис. 5 - Осциллограммы импульсов ГПН

Напряжение на C1 наблюдается компаратором, встроенным в микроконтроллер DD1. Инвертирующий вход компаратора подключен к C1, а не инвертирующий к источнику опорного напряжения на R6-VD1. По достижении напряжения на C1 значения опорного (примерно 3.8В) напряжение на выходе компаратора скачком изменяется от 5В до 0.

Этот момент отслеживается программно и приводит к переконфигурированию порта GP1 микроконтроллера с входа на выход и подачи на него уровня логического 0. В результате конденсатор C1 оказывается замкнутым на землю через открытый транзистор порта и достаточно быстро разряжается. По окончании разряда C1 в начале следующего цикла вывод GP1 вновь конфигурируется на вход и производится формирование короткого прямоугольного синхроимпульса на выводе GP2 амплитудой 5В.

Рис. 6 - Печатная плата ГПН обр. сторона

Длительность разрядного и синхронизирующего импульсов устанавливается программно и моет изменяться в широких пределах, т.к. микроконтроллер тактируется внутренним генератором на частоте 4 МГц. При варьировании сопротивления R1+R2 в пределах 1К - 1М частота выходных импульсов при указанной емкости C1 меняется примерно от 1 кГц до 1 Гц.

Пилообразное напряжение на C1 усиливается ОУ DA1 вплоть до уровня напряжения его питания. Желаемая амплитуда выходного напряжения устанавливается резистором R5. Выбор типа ОУ обусловлен возможностью его работы от источника 44В.

Напряжение 40В для питания ОУ получается из 5В с помощью импульсного преобразователя на микросхеме DA2 включенной по стандартной схеме из ее даташита. Рабочая частота преобразователя 1.3 мГц.

Генератор собран на плате размером 32х36 мм.

Все резисторы и большинство конденсаторов типоразмера 0603. Исключение составляют C4 (0805), C3 (1206), и C5 (танталовый, типоразмер А). Резисторы R2, R5 и разъем J1 установлены на обратной стороне платы (рис 6).

Рис. 7 - Печатная плата ГПН лиц. сторона

Верхний предел частоты в данной схеме ограничен временем разряда C1, что в свою очередь определяется внутренним сопротивлением выходных транзисторов порта. Для ускорения процесса разряда желательно разряжать C1 через отдельный МОП транзистор с малым сопротивлением открытого канала.

При этом можно значительно уменьшить время программной задержки для разряда, которая необходима для обеспечения полной разрядки конденсатора и, соответственно, падения выходного напряжения пилы практически до 0В.

Для терм стабилизации работы генератора желательно в качестве VT1-VT2 применить сборку из двух PNP транзисторов в одном корпусе. При низкой частоте генерируемых импульсов (менее 1 Гц) начинает сказываться конечное сопротивление генератора тока, что приводит к ухудшению линейности пилообразного напряжения. Ситуация может быть улучшена путем установки резисторов в эмиттеры VT1 и VT2.

1.2.3 Функциональная схема ГПН

Анализируя принципиальную схему, функционально ее можно разбить на 4 основные части.

Рис. 8 - Функциональные части принципиальной схемы ГПН

генератор напряжение микроконтроллер индикатор

Исходя из анализа схемы (ГПН) можем составить функциональную схему устройства.

Рис. 9 - Функциональная схема ГПН

ФПН - Формирователь пилообразного напряжения

М - Микроконтроллер

УН - Усилитель напряжения

ИП - Импульсный преобразователь

2 . Разработка структурной функциональной схемы цифрового устройства

2.1 Построение функциональной схемы

На основание анализа существующих приборов, составим собственную схему. Функциональная схема будет выглядеть следующим образом

Рис. 10 - Функциональная схема ГПН

ДН - Делитель напряжения

ТГ - Триггер Шмита

ДЦ - Диодно-резисторная цепь

ИТ - Интегратор

2.2 Ф ункциональные части устройства

Делитель напряжения

Рис. 11 - Делитель напряжения

Делить напряжения состоит из 2 резисторов R1 и R2. На инвертирующий вход ОУ DA1 и прямой вход ОУ DA2 подаётся половина напряжения питания с делителя напряжения. Благодаря нему не требуется дополнительный источник питания

Триггер Шмита

Триггер Шмита собран на операционном усилителе. И играет роль формирователя пилообразного напряжения

Рис. 12 - Триггер Шмита

Диодно-резисторная цепь

С помощью Диодно-резисторной цепи можно задать нужную форму и частоту импульсов.

Рис. 13 - Диодно-резисторная цепь

Интегратор собран на операционном усилителе

Рис. 14 - Интегратор

3 . Принципиальная схема генератора пилообразного напряжения

3.1 Принципиальная схема генератора ГПН

Исходя из рассмотренных выше функциональных узлов можно составить принципиальную схему генератора ГПН.

Рис. 15 - Принципиальная схема ГПН

Элементы на схеме

R1, R2 - Делитель напряжения

R4, R5, D1, D2 - Диодно-резисторная цепь

R6 - С помощью него схема охвачена обратной связью

C1 - Конденсатор обратной связи

C2 - Фильтр

3.2 Описание схемы ГПН

Этот генератор пилообразного напряжения может найти применение в различных схемах, например, в ШИМ, в качестве генератора развёртки, в устройствах сравнения напряжений, временной задержки и расширения импульсов.

Схема генератора изображена на рисунке 15. Он состоит из триггера Шмита на операционном усилителе DA1, и из интегратора, собранного на операционном усилителе DA2. Оба ОУ соединены последовательно через диодно-резисторные цепи D1, D2, R4, R5 и с помощью резистора R6 схема охвачена обратной связью.

На инвертирующий вход ОУ DA1 и прямой вход ОУ DA2 подаётся половина напряжения питания с делителя напряжения, собранного на резисторах R1, R2, что позволяет обойтись одним источником питания.

Номиналы элементов

3.3 Принцип работы ГПН

При включении питания конденсатор С1 разряжен, он начинает заряжаться через цепочку D2R5 и выход усилителя DA1, на котором установилось низкое напряжение, другой вывод конденсатора С1 подключён к выходу ОУ DA2, на котором напряжение растёт. Как только это напряжение достигнет порога переключения триггера Шмита DA1, то триггер переключится и на его выходе установится некоторое напряжение, которое через диод D1 и резистор R4 будут вначале разряжать, а затем заряжать до другой полярности конденсатор С1. Далее процесс повторяется, и схема переходит в автоколебательный режим.

Поскольку резисторы R4 и R5, через которые происходит заряд и разряд конденсатора С1 имеют разный номинал, то и время заряда и разряда конденсатора будет разным, соответственно пилообразное напряжение на выходе ОУ DA1 будет долго нарастать и быстро спадать.

Расчет частоты колебаний

Частота пилообразного сигнала на выходе генератора определяется по формуле

где F - частота в Герцах;

R3, R6, R4, R5 - сопротивления в Омах;

C1 - ёмкость в Фарадах.

Заключение

В соответствии с заданием был разработан проект устройства: «Генератор пилообразного напряжения», который полностью удовлетворяет требуемым параметрам.

Данный прибор состоит из:

ДН - Делитель напряжения.

ТГ - Триггер Шмита.

ДЦ - Диодно-резисторная цепь.

ИТ - Интегратор.

В одном из узлов произведен расчет частоты RC контура.

Целью курсового проекта на тему «Генератор пилообразного.

напряжения» достигнута путём решения поставленных задач, а именно:

Анализ существующих аналогов.

Разработка структурной схемы.

Разработка принципиальной схемы устройства.

Решение поставленных задач достигалась с использованием технической и справочной литературы, а также интернет ресурсов.

Список литературы

1. Справочник. «Интегральные микросхемы и их зарубежные аналоги». Под редакцией Нефёдова А.В. - М. Радиософт. 1994 г.

2. Справочник. «Диоды, тиристоры, транзисторы и микросхемы общего назначения». Воронеж. 1994г.

3. «Электроника» В.И. Лачин, Н.С. Савёлов. Феникс 2000 г.

4. Жмурин Д.Н. Математические основы теории систем: уч. пос. - Новочеркасск, 1998.

5. Генерация и генераторы сигналов. Дьяконов В.А.

Размещено на Allbest.ru

Подобные документы

    Устройство и механизм действия простейшего генератора пилообразного напряжения. Принципиальная схема простейшего ГПН. Классификация устройств со стабилизаторами тока. Разработка принципиальной схемы генератора. Алгоритм и программа функционирования.

    курсовая работа , добавлен 09.06.2011

    Характеристика, параметры и принципы построения генераторов пилообразного напряжения с зарядным транзистором и стабилизатором тока. Исследование зависимости амплитуды выходного сигнала от напряжения питания для схем с биполярным и полевым транзисторами.

    курсовая работа , добавлен 27.02.2012

    Принципы построения генераторов. Выбор и обоснование принципиальной схемы генератора пилообразного напряжения (ГПН). Расчёт элементов устройства, выбор типов и номиналов. Классификация ГПН со стабилизаторами тока, применение дискретных элементов.

    курсовая работа , добавлен 29.06.2012

    Основные характеристики импульса. Генераторы линейно изменяющегося (пилообразного) напряжения, их назначение и область применения. Методы линеаризации пилообразного напряжения. Требования к устройству. Основные характеристики и принцип построения ГПН.

    курсовая работа , добавлен 07.08.2013

    Электронная вычислительная техника. Описание схемы устройства, расчет фантастронного генератора пилообразного напряжения. Генераторы прямоугольных импульсов, линейно-изменяющегося напряжения, ступенчато-изменяющегося напряжения, синусоидальных колебаний.

    дипломная работа , добавлен 17.04.2009

    Проектирование цифрового генератора аналоговых сигналов. Разработка структурной, электрической и функциональной схемы устройства, блок-схемы опроса кнопок и работы генератора. Схема делителя с выходом в виде напряжения на инверсной резистивной матрице.

    курсовая работа , добавлен 05.08.2011

    Разработка структурной схемы свип-генератора. Схема генератора качающейся частоты. Основные характеристики и параметры усилителей. Нелинейные искажения усилителя. Входное и выходное напряжения. Расчёт коэффициента усиления по мощности усилителя.

    курсовая работа , добавлен 28.12.2014

    Схема генератора сигнала треугольной формы. Принципиальная схема устройства. Описание работы программного обеспечения. Внутренний тактовый генератор, работающий от внешнего кварцевого резонатора. Фильтр низких частот. Внешняя цепь тактового генератора.

    курсовая работа , добавлен 19.01.2012

    Методика проектирования генератора на основе микроконтроллера, его технические характеристики. Выбор и обоснование технического решения. Разработка принципиальной и электрической схемы устройства. Эмуляция программы в пакете VMLAB, оценка погрешностей.

    курсовая работа , добавлен 13.06.2010

    Расчет сетевого выпрямителя, силовой части, выбор элементов однотактного конвертора. Расчет предварительного усилителя, генератора пилообразного напряжения. Схема сравнения и усиления сигнала ошибки. Вспомогательный источник питания, емкость конденсатора.

Пилообразным называют напряжение, нарастающее пропорционально времени и убывающее скачкообразно. На рис. 46, а показано идеальное пилообразное напряжение, имеющее время нарастания t нар и время спада t сп, равное нулю. Очевидно, что период такого напряжения Т равен времени нарастания. Реальные генераторы пилообразного напряжения имеют не совсем линейно нарастающее напряжение и не равное нулю время его спада (рис. 46, б ).

Пилообразное напряжение применяют для разверстки электронного луча в электронно-лучевых приборах.

Рис. 46. Кривые изменения идеального (а) и реального (б) пилообразного напряжения

Рассмотрим работу управляемого транзисторного генератора пилообразного напряжения с емкостной обратной связью (рис. 47).

Рис. 47. Схема генератора пилообразного напряжения

Генератор управляется импульсами отрицательной полярности через диод VDI. В исходном состоянии транзистор VT1 заперт положительным напряжением, подаваемым от источника э.д.с. Е бэ через резистор R 2 ,диод VDI и резистор R 1 .Конденсатор С заряжается через R K , R 1 , VDI и R 2 приблизительно до напряжения Е кэ .При подаче управляющего импульса диод VD1 запирается. Транзистор VTI открывается, так как напряжение на его базу подается теперь через резистор R. Начинается разряд конденсатора через открытый транзистор. Потенциалы базы и коллектора в момент отпирания транзистора скачком уменьшаются. Емкостная обратная связь между коллектором и базой поддерживает ток разряда конденсатора почти неизменным.

В момент окончания управляющего импульса диод отпирается, транзистор закрывается напряжением источника э.д.с. Е бэ, и начинается заряд конденсатора С .

Для обеспечения полного разряда конденсатора и получения максимальной амплитуды пилообразного напряжения длительность управляющих импульсов выбирают исходя из соотношения

τ = (1,1 – 1,2) t разр

где t разр - время разряда конденсатора.

Частота пилообразного напряжения определяется параметрами разрядной цепи и ограничивается частотными свойствами транзистора.