Проектирование и строительство домов

Проектирование и строительство домов

» » Возможность применения в технике теории бифуркаций. Понятие бифуркации

Возможность применения в технике теории бифуркаций. Понятие бифуркации

Эта публикация цитируется в (всего в 63 статьях)

Теория бифуркаций

Аннотация: Теория бифуркаций фазовых портретов дифференциальных уравнений вблизи положений равновесия и предельных циклов изложена в первых двух главах, Изложение начинается с основных понятий и фактов и заканчивается новыми результатами о бифуркациях в типичных однопараметрических семействах, происходящие на границе множества систем Морса-Смейла. Релаксационные колебания изучены с точки зрения теории особенностей и теории нормальных форм; включены результаты о затягивании потери устойчивости и решениях-утках.
Библ. 206.

Полный текст: PDF файл (31704 kB)

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.925 +517.928

Образец цитирования: В. И. Арнольд, В. С. Афраймович, Ю. С. Ильяшенко, Л. П. Шильников, “Теория бифуркаций”, Динамические системы - 5 , Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 5 , ВИНИТИ, М., 1986, 5-218

Цитирование в формате AMSBIB

\RBibitem{ArnAfrIly86}
\by В.~И.~Арнольд, В.~С.~Афраймович, Ю.~С.~Ильяшенко, Л.~П.~Шильников
\paper Теория бифуркаций
\inbook Динамические системы~--~5
\serial Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления
\yr 1986
\vol 5
\pages 5--218
\publ ВИНИТИ
\publaddr М.
\mathnet{http://mi.сайт/intf40}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=895653}
\zmath{https://zbmath.org/?q=an:0797.58003}

Образцы ссылок на эту страницу:

  • http://mi.сайт/intf40
  • http://mi.сайт/rus/intf/v5/p5
    ОТПРАВИТЬ:

    Эта публикация цитируется в следующих статьяx:

    1. Г. Р. Белицкий, “Гладкая эквивалентность ростков векторных полей с одним нулевым или парой чисто мнимых собственных значений”, Функц. анализ и его прил. , 20 :4 (1986), 1-8 ; G. R. Belitskii, “Smooth equivalence of germs of vector fields with a single zero eigenvalue or a pair of purely imaginary eigenvalues”, Funct. Anal. Appl. , 20 :4 (1986), 253-259
    2. М. А. Шерешевский, “О хаусдорфовой размерности фрактальных базисных множеств, возникающих при некоторых глобальных бифуркациях потоков на трехмерных многообразиях”, УМН , 43 :3(261) (1988), 199-200 ; M. A. Shereshevskii, “On the Hausdorff dimension of fractal basis sets arising in certain global bifurcations of flows on three-dimensional manifolds”, Russian Math. Surveys , 43 :3 (1988), 223-224
    3. А. В. Бабин, М. И. Вишик, “Спектральное и стабилизированное асимптотиче­ское поведение решений нелинейных эволюционных уравнений”, УМН , 43 :5(263) (1988), 99-132 ; A. V. Babin, M. I. Vishik, “Spectral and stabilized asymptotic behaviour of solutions of non-linear evolution equations”, Russian Math. Surveys , 43 :5 (1988), 121-164
    4. Б. А. Хесин, “Версальные деформации пересечений инвариантных подмногообразий динамических систем”, УМН , 44 :3(267) (1989), 181-182 ; B. A. Khesin, “Versal deformations of intersections of invariant submanifolds of dynamical systems”, Russian Math. Surveys , 44 :3 (1989), 201-203
    5. Ю. С. Ильяшенко, С. Ю. Яковенко, “Конечно-гладкие нормальные формы локальных семейств диффеоморфизмов и векторных полей.”, УМН , 46 :1(277) (1991), 3-39 ; Yu. S. Ilyashenko, S. Yu. Yakovenko, “Finitely-smooth normal forms of local families of diffeomorphisms and vector fields”, Russian Math. Surveys , 46 :1 (1991), 1-43
    6. И. Д. Чуешов, “Глобальные аттракторы в нелинейных задачах математической физики”, УМН , 48 :3(291) (1993), 135-162 ; I. D. Chueshov, “Global attractors for non-linear problems of mathematical physics”, Russian Math. Surveys , 48 :3 (1993), 133-161
    7. Е. В. Николаев, “Бифуркации предельных циклов дифференциальных уравнений, допускающих инволютивную симметрию”, Матем. сб. , 186 :4 (1995), 143-160 ; E. V. Nikolaev, “Bifurcations of limit cycles of differential equations admitting an involutive symmetry”, Sb. Math. , 186 :4 (1995), 611-627
    8. С. В. Гонченко, “Модули $\Omega$ -сопряженности двумерных диффеоморфизмов с негрубым гетероклиническим контуром”, Матем. сб. , 187 :9 (1996), 3-24 ; S. V. Gonchenko, “Moduli of $\Omega$ -conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour”, Sb. Math. , 187 :9 (1996), 1261-1281
    9. Д. В. Аносов, А. А. Болибрух, В. А. Васильев, А. М. Вершик, А. А. Гончар, М. Л. Громов, С. М. Гусейн-Заде, В. М. Закалюкин, Ю. С. Ильяшенко, В. В. Козлов, М. Л. Концевич, Ю. И. Манин, А. И. Нейштадт, С. П. Новиков, Ю. С. Осипов, М. Б. Севрюк, Я. Г. Синай, А. Н. Тюрин, Л. Д. Фаддеев, Б. А. Хесин, А. Г. Хованский, “Владимир Игоревич Арнольд (к шестидесятилетию со дня рождения)”, УМН , 52 :5(317) (1997), 235-255 ; D. V. Anosov, A. A. Bolibrukh, V. A. Vassiliev, A. M. Vershik, A. A. Gonchar, M. L. Gromov, S. M. Gusein-Zade, V. M. Zakalyukin, Yu. S. Ilyashenko, V. V. Kozlov, M. L. Kontsevich, Yu. I. Manin, A. I. Neishtadt, S. P. Novikov, Yu. S. Osipov, M. B. Sevryuk, Ya. G. Sinai, A. N. Tyurin, L. D. Faddeev, B. A. Khesin, A. G. Khovanskii, “Vladimir Igorevich Arnol"d (on his 60th birthday)”, Russian Math. Surveys , 52 :5 (1997), 1117-1139
    10. С. А. Вакуленко, П. В. Гордон, “Распространение и рассеяние кинков в неоднородной нелинейной среде”, ТМФ , 112 :3 (1997), 384-394 ; S. A. Vakulenko, P. V. Gordon, “Propagation and scattering of kinks in inhomogeneous nonlinear media”, Theoret. and Math. Phys. , 112 :3 (1997), 1104-1112
    11. Е. А. Сатаев, “Производная Шварца для многомерных отображений и потоков”, Матем. сб. , 190 :1 (1999), 139-160 ; E. A. Sataev, “Schwartzian derivative for multidimensional maps and flows”, Sb. Math. , 190 :1 (1999), 143-164
    12. Э. Э. Шноль, Е. В. Николаев, “О бифуркациях симметричных положений равновесия, отвечающих двукратным собственным значениям”, Матем. сб. , 190 :9 (1999), 127-150 ; È. È. Shnol", E. V. Nikolaev, “On the bifurcations of equilibria corresponding to double eigenvalues”, Sb. Math. , 190 :9 (1999), 1353-1376
    13. Ю. Н. Бибиков, “Устойчивость и бифуркация при периодических возмущениях положения равновесия осциллятора с бесконечно большой или бесконечно малой частотой колебаний”, Матем. заметки , 65 :3 (1999), 323-335 ; Yu. N. Bibikov, “Stability and bifurcation under periodic perturbations of the equilibrium position of an oscillator with an infinitely large or infinitely small oscillation frequency”, Math. Notes , 65 :3 (1999), 269-279
    14. Э. Э. Шноль, “Правильные многогранники и бифуркации симметричных положений равновесия обыкновенных дифференциальных уравнений”, Матем. сб. , 191 :8 (2000), 141-157 ; È. È. Shnol", “Regular polyhedra and bifurcations of symmetric equilibria of ordinary differential equations”, Sb. Math. , 191 :8 (2000), 1243-1258
    15. С. В. Богатырев, “Циклы-утки в системе Льенарда”, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 12 , СамГТУ, Самара, 2001, 36-39
    16. Л. И. Кононенко, “Качественный анализ сингулярно возмущенных систем с одной или двумя медленными и быстрыми переменными”, Сиб. журн. индустр. матем. , 5 :4 (2002), 55-62
    17. Е. П. Волокитин, С. А. Тресков, “Бифуркационная диаграмма кубической системы льенаровского типа”, Сиб. журн. индустр. матем. , 5 :3 (2002), 67-75
    18. Е. А. Щепакина, “Условия безопасности воспламенения горючей жидкости в пористом изоляционном материале”, Сиб. журн. индустр. матем. , 5 :3 (2002), 162-169
    19. М. Д. Новиков, Б. М. Павлов, “О некоторых простых потоковых системах с хаотическими режимами”, Матем. моделирование , 14 :11 (2002), 63-77
    20. Е. А. Щепакина, “Притягивающе-отталкивающие интегральные поверхности в задачах горения”, Матем. моделирование , 14 :3 (2002), 30-42
    21. О. Д. Аносова, “Инвариантные многообразия в сингулярно возмущенных системах”, , Сборник статей. К 80-летию со дня рождения академика Евгения Фроловича Мищенко, Тр. МИАН, 236 , Наука, МАИК «Наука/Интерпериодика», М., 2002, 27-32 ; O. D. Anosova, “Invariant Manifolds in Singularly Perturbed Systems”, Proc. Steklov Inst. Math. , 236 (2002), 19-24
    22. Е. А. Щепакина, “Сингулярно возмущенные модели горения в многофазных средах”, Сиб. журн. индустр. матем. , 6 :4 (2003), 142-157
    23. Е. А. Щепакина, “Сингулярные возмущения в задаче моделирования безопасных режимов горения”, Матем. моделирование , 15 :8 (2003), 113-117
    24. Л. И. Кононенко, “Инфинитезимальный анализ сингулярных систем с быстрыми и медленными переменными”, Сиб. журн. индустр. матем. , 6 :4 (2003), 51-59
    25. Л. Г. Куракин, В. И. Юдович, “О бифуркациях равновесий при разрушении косимметрии динамической системы”, Сиб. матем. журн. , 45 :2 (2004), 356-374 ; L. G. Kurakin, V. I. Yudovich, “On equilibrium bifurcations in the cosymmetry collapse of a dynamical system”, Siberian Math. J. , 45 :2 (2004), 294-310
    26. С. В. Гонченко, В. С. Гонченко, “О бифуркациях рождения замкнутых инвариантных кривых в случае двумерных диффеоморфизмов с гомоклиническими касаниями”, Динамические системы и смежные вопросы геометрии , Сборник статей. Посвящается памяти академика Андрея Андреевича Болибруха, Тр. МИАН, 244 , Наука, МАИК «Наука/Интерпериодика», М., 2004, 87-114 ; S. V. Gonchenko, V. S. Gonchenko, “On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies”, Proc. Steklov Inst. Math. , 244 (2004), 80-105
    27. J. Guckenheimer, R. Haiduc, “Canards at folded nodes”, Mosc. Math. J. , 5 :1 (2005), 91-103
    28. Э. Л. Аэро, С. А. Вакуленко, “Асимптотическое поведение решений для сильно нелинейной модели кристаллической решетки”, ТМФ , 143 :3 (2005), 357-367 ; E. L. Aero, S. A. Vakulenko, “Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice”, Theoret. and Math. Phys. , 143 :3 (2005), 782-791
    29. А. Р. Борисюк, “Глобальные бифуркации на бутылке Клейна. Общий случай”, Матем. сб. , 196 :4 (2005), 3-22 ; A. R. Borisyuk, “Global bifurcations on a Klein bottle. The general case”, Sb. Math. , 196 :4 (2005), 465-483
    30. Е. П. Белан, “О динамике бегущих волн в параболическом уравнении с преобразованием сдвига пространственной переменной”, Журн. матем. физ., анал., геом. , 1 :1 (2005), 3-34
    31. Т. С. Фирсова, “Топология аналитических слоений в $\mathbb C^2$ . Свойство Купки-Смейла”, Нелинейные аналитические дифференциальные уравнения , Сборник статей, Тр. МИАН, 254 , Наука, МАИК «Наука/Интерпериодика», М., 2006, 162-180 ; T. S. Firsova, “Topology of Analytic Foliations in $\mathbb C^2$ . The Kupka-Smale Property”, Proc. Steklov Inst. Math. , 254 (2006), 152-168
    32. А. О. Ремизов, “Многомерная конструкция Пуанкаре и особенности поднятых полей для неявных дифференциальных уравнений”, Оптимальное управление , СМФН, 19 , РУДН, М., 2006, 131-170 ; A. O. Remizov, “Many-Dimensional Poincaré Construction and Singularities of Lifted Fields For Implicit Differential Equations”, Journal of Mathematical Sciences , 151 :6 (2008), 3561-3602
    33. Л. И. Кононенко, “Качественный анализ сингулярно возмущенной системы в $\mathbb R^3$ ”, Сиб. журн. индустр. матем. , 10 :4 (2007), 76-82 ; L. I. Kononenko, “Qualitative analysis of a singularly perturbed system in $\mathbb R^3$ ”, J. Appl. Industr. Math. , 3 :4 (2009), 456-461
    34. Ю. А. Гришина, А. А. Давыдов, “Структурная устойчивость простейших динамических неравенств”, Динамические системы и оптимизация , Сборник статей. К 70-летию со дня рождения академика Дмитрия Викторовича Аносова, Тр. МИАН, 256 , Наука, МАИК «Наука/Интерпериодика», М., 2007, 89-101 ; Yu. A. Grishina, A. A. Davydov, “Structural Stability of Simplest Dynamical Inequalities”, Proc. Steklov Inst. Math. , 256 (2007), 80-91
    35. Ф. И. Атауллаханов, Е. С. Лобанова, О. Л. Морозова, Э. Э. Шноль, Е. А. Ермакова, А. А. Бутылин, А. Н. Заикин, “Сложные режимы распространения возбуждения и самоорганизация в модели свертывания крови”, УФН , 177 :1 (2007), 87-104 ; F. I. Ataullakhanov, E. S. Lobanova, O. L. Morozova, È. È. Shnol", E. A. Ermakova, A. A. Butylin, A. N. Zaikin, “Intricate regimes of propagation of an excitation and self-organization in the blood clotting model”, Phys. Usp. , 50 :1 (2007), 79-94
    36. П. Д. Лебедев, “Вычисление меры невыпуклости плоских множеств”, Тр. ИММ УрО РАН, 13 , № 3, 2007, 84-94
    37. “Владимир Игоревич Арнольд (к семидесятилетию со дня рождения)”, УМН , 62 :5(377) (2007), 175-184 ; “Vladimir Igorevich Arnol"d (on his 70th birthday)”, Russian Math. Surveys , 62 :5 (2007), 1021-1030
    38. Ю. М. Апонин, Е. А. Апонина, “Иерархия моделей математической биологии и численно-аналитические методы их исследования (обзор)”, Матем. биология и биоинформ. , 2 :2 (2007), 347-360
    39. Е. С. Голодова, Е. А. Щепакина, “Моделирование безопасных процессов горения с максимальной температурой”, Матем. моделирование , 20 :5 (2008), 55-68 ; E. S. Golodova, E. A. Shchepakina, “Modelling of safe combustion with maximal temperature”, Math. Models Comput. Simul. , 1 :2 (2009), 322-334
    40. В. М. Закалюкин, А. О. Ремизов, “Лежандровы особенности в системах неявных обыкновенных дифференциальных уравнений и быстро-медленных динамических системах”, Дифференциальные уравнения и динамические системы , Сборник статей, Тр. МИАН, 261 , МАИК «Наука/Интерпериодика», М., 2008, 140-153 ; V. M. Zakalyukin, A. O. Remizov, “Legendre Singularities in Systems of Implicit ODEs and Slow-Fast Dynamical Systems”, Proc. Steklov Inst. Math. , 261 (2008), 136-148
    41. Н. Е. Кулагин, Л. М. Лерман, Т. Г. Шмакова, “О радиальных решениях уравнения Свифта-Хоенберга”, Дифференциальные уравнения и динамические системы , Сборник статей, Тр. МИАН, 261 , МАИК «Наука/Интерпериодика», М., 2008, 188-209 ; N. E. Kulagin, L. M. Lerman, T. G. Shmakova, “On Radial Solutions of the Swift-Hohenberg Equation”, Proc. Steklov Inst. Math. , 261 (2008), 183-203
    42. П. Д. Лебедев, А. А. Успенский, “Геометрия и асимптотика волновых фронтов”, Изв. вузов. Матем. , 2008, № 3, 27-37 ; P. D. Lebedev, A. A. Uspenskii, “Geometry and the asymptotics of wave forms”, Russian Math. (Iz. VUZ) , 52 :3 (2008), 24-33
    43. Л. И. Кононенко, “Релаксации в сингулярно возмущенных системах на плоскости”, Вестн. НГУ. Сер. матем., мех., информ. , 9 :4 (2009), 45-50
    44. Д. В. Аносов, “О математических работах Л. С. Понтрягина”, Дифференциальные уравнения и топология. I , Сборник статей. К 100-летию со дня рождения академика Льва Семеновича Понтрягина, Тр. МИАН, 268 , МАИК «Наука/Интерпериодика», М., 2010, 11-23 ; D. V. Anosov, “On the mathematical work of L. S. Pontryagin”, Proc. Steklov Inst. Math. , 268 (2010), 5-16
  • а) Введение в теорию бифуркаций

    Теория бифуркаций динамических систем описывает качественные, скачкообразные изменения фазовых портретов дифференциальных уравнений при непрерывном, плавном изменении параметров. Так, при потере устойчивости особой точкой может возникнуть предельный цикл, а при потере устойчивости предельным циклом – хаос. Такого рода изменения и называются бифуркациями.

    В дифференциальных уравнениях, описывающих реальные физические явления, чаще всего встречаются особые точки и предельные циклы общего положения, то есть гиперболические. Однако встречаются и специальные классы дифференциальных уравнений, где дело обстоит иначе. Таковы, например, системы, обладающие симметриями, связанными с природой описываемого явления, а также гамильтоновы уравнения, обратимые системы, уравнения, сохраняющие фазовый объем. Так, например, рассмотрим однопараметрическое семейство динамических систем на прямой с симметрией второго порядка:

    Типичная бифуркация симметричного положения равновесия в такой системе(«трезубец») изображена на рис. 1. Она состоит в том, что от теряющего устойчивость симметричного положения равновесия ответвляется два новых, менее симметричных, положения равновесия. При этом симметричное положение равновесия сохраняется, но теряет устойчивость.

    Основы математической теории бифуркаций были созданы А. Пуанкаре и A. M. Ляпуновым в начале ХХ века, а затем развиты некоторыми школами. Теория бифуркаций находит приложения в разных науках, начиная от физики и химии, заканчивая биологией и социологией.

    Происхождение термина бифуркация (от лат. bifurcus - раздвоенный) связано с тем фактом, что динамическая система, поведение которой в равновесной области описывается системой линейных дифференциальных уравнений, имеющих единственное решение, при изменении параметров до некоторого критического значения, достигает так называемой точки бифуркации – точки ветвления возможных путей эволюции системы.

    Этот момент (точка ветвления) соответствует переходу системы в неравновесное состояние, а на уровне математического описания ему соответствует переход к нелинейным дифференциальным уравнениям и ветвление их решений.

    Бифуркацией называется приобретение нового качества эволюции (в движении) динамической системы при малом изменении ее параметров. Бифуркация соответствует перестройке характера движения или структуры реальной системы (физической, химической, биологической и т. д.).

    С позиций математики, бифуркация – это смена топологической структуры разбиения фазового пространства динамической системы на траектории при малом изменении ее параметров.


    Это определение опирается на понятие топологической эквивалентности динамических систем: две системы топологически эквивалентны, если они имеют одинаковую структуру разбиения фазового пространства на траектории, если движения одной из них могут быть сведены к движениям другой непрерывной заменой координат и времени.

    Примером такой эквивалентности служат движения маятника при разных величинах коэффициента трения k: при малом трении траектории на фазовой плоскости имеют вид скручивающихся спиралей, а при большом – парабол (рис. на следующем слайде)

    Переход от фазового портрета а к б не представляет собой бифуркации, поскольку бифуркации – это переход от данной системы к топологически неэквивалентной.

    Пример: В математической модели возникновению ячеек Бенара соответствует бифуркация рождения новых состояний равновесия (соответствующих ячеистой структуре).

    Среди различных бифуркаций при анализе моделей физических систем особенно интересны, так называемые, локальные – это бифуркации, при которых происходит перестройка отдельных движений динамической системы.

    Простейшими и наиболее важными из них являются:

    бифуркации состояний равновесия (ячейки Бенара)

    бифуркации периодических движений.

    Заключение. Важные черты бифуркации

    Бифуркации, в результате которых исчезают статические или периодические режимы (то есть состояния равновесия или предельные циклы), могут приводить к тому, что динамическая система переходит в режим стохастических колебаний.

    В приложениях теории бифуркаций ставится задача – для каждой конкретной ситуации найти аналитические выражения для вариантов решений уравнений, возникающих в точках бифуркации, а также определение значений параметров, при которых начинается ветвление решений уравнений. Предварительно необходимо провести анализ устойчивости системы и поиск точек ее неустойчивости. Методы этого анализа основаны на теории устойчивости, они достаточно подробно разработаны и носят чисто технический характер.

    В теории бифуркаций описано большое число бифуркационных ситуаций. В развитии реальных природных систем могут наблюдаться не отдельные бифуркации, а целые каскады бифуркаций (классическим примером может служить возникновение турбулентности и других гидродинамических неустойчивостей). Кроме того, различают бифуркации и катастрофы. Существует даже теория катастроф. Однако, анализ связей и различий между ними выходит за пределы данного учебного пособия.

    Очень важная черта бифуркаций: В момент времени, когда система находится вблизи точки бифуркации, огромную роль начинают играть малые возмущения значений ее параметров. Эти возмущения могут носить как чисто случайный характер, так и быть целенаправленными. Именно от них зависит, по какой эволюционной ветви пойдет система, пройдя через точку бифуркации. То есть, если до прохождения точки бифуркации, поведение системы подчиняется детерминистским закономерностям, то в самой точке бифуркации решающую роль играет случай.

    Вследствие этого, по словам И. Пригожина, мир становится «загадочным, непредсказуемым, неконтролируемым». В определенном отношении это так. Но полностью с этим высказыванием нельзя согласиться, поскольку для любой системы в точке бифуркации имеется не произвольный, а вполне определенный набор путей эволюции. Поэтому даже если работает случайность, то она работает в строго определенном поле возможностей. И, следовательно, говорить о полной неопределенности и, тем более, полной загадочности некорректно. Что же касается неконтролируемости, то, конечно, говорить о тотальном контроле не имеет смысла, но в некоторых процессах возможно вмешательство как подталкивание к желаемым вариантам развития.

    4. ХАОС

    Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям; поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной; примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

    Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

    Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными.

    Динамический хаос - явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. Причиной появления хаоса является неустойчивость по отношению к начальным условиям и параметрам: малое изменение начального условия со временем приводит к сколь угодно большим изменениям динамики системы.

    Так как начальное состояние физической системы не может быть задано абсолютно точно (например, из-за ограничений измерительных инструментов), то всегда необходимо рассматривать некоторую (пусть и очень маленькую) область начальных условий. При движении в ограниченной области пространства экспоненциальная расходимость с течением времени близких орбит приводит к перемешиванию начальных точек по всей области. После такого перемешивания бессмысленно говорить о координате частицы, но можно найти вероятность ее нахождения в некоторой точке.

    Детерминированный хаос - сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

    Для изучения видов бифуркации желательно разобраться с самим . В общем случае исследование всего фазового пространства на точки бифуркации является сложной задачей для n-мерного пространства, поэтому проводятся локальные исследования, а полученные точки бифуркации называются локальными точками бифуркации . За локальными точками бифуркации можно проследить, наблюдая развитие малых возмущений в системе Бифуркации состояний равновесия и периодических движений на примере шарика. Простейшими и наиболее важными из них являются бифуркации состояний равновесия и периодических движений.

    Бифуркация положений равновесия

    К основным бифуркациям состояний равновесия относят:
    1. слияние и последующее исчезновение двух состояний равновесия. Примером может служить движение шарика в потенциальной «яме» с «полочкой» (рис. 1). При сглаживании «полочки» BD состояние равновесия «седло» S и центр С 2 сливаются и исчезают (рис. 2).
    Рисунок 1 - Схема движения шарика в «яме» с «полочкой» (а) и его фазовый портрет (б) Рисунок 2 - Схема движения шарика после бифуркации (а) и его фазовый портрет (б)
    • Рождение предельного цикла из состояния равновесия. Пример такой бифуркации бифуркация Хопфа .
    Рассмотрим динамическую систему (1) Динамическаия система Она является упрощенным выражением сложной динамической системы, описываемой функциями x(t) и y(t) , которые выражаются через соответствующие полярные координаты: и называется системой Хопфа. Система (1) зависит от двух параметров, один из которых λ будет для нас ключевым, а другой с=const . Решения задачи Коши при некоторых заданных начальных значения r(t=0)=r 0 , "phi;(t=0)="phi; 0 при λ < 0 дает нам фазовый портрет и график динамики, изображенные на рис. 3.
    Рисунок 3 - График динамики (а) и фазовый портрет (б) В данном случае существует единственная особая точка - устойчивый фокус . Построим теперь график динамики и фазовый портрет для случая λ > 0 (λ = 4) (см. рис. 4)
    Рисунок 3 - График динамики (а) и фазовий портрет (б) при λ > 0 Разными цветами изображены развязки при различных начальных условиях. Как видим, после короткого переходного процесса система входит в колебательный режим, причем амплитуда и частота колебаний не зависят от начальных условий (при любых начальных условиях система придет в одно и то же колебательное состояние). На фазовом портрете решение для разных начальных условий как бы «наматываются» на замкнутую кривую. Эта кривая, к которой при t -> ∞ стремятся решения задачи Коши, является аттрактором и называется предельным циклом . Колебательный процесс, описывающий этот предельный цикл, называется автоколебаниями . Развязки в виде автоколебаний возможны только в существенно нелинейных динамических системах. Динамическая система Хопфа имеет нелинейность в виде куба параметра, причем дополнительная нелинейность накладывается благодаря определению функций x(t) и y(t) как выражений тригонометрических функций. Можно доказать, что для данной динамической системы амплитуда колебаний равна . Итак, λ = 0 - бифуркационные значения параметра. В этой точке узел теряет устойчивость и вместо него рождается устойчивый предельный цикл. Данная бифуркация рождения предельного цикла из неподвижной точки называется бифуркацией Хопфа , а рождение автоколебаний - мягким (при малых изменениях параметра колебания имеют малую амплитуду, которая увеличивается с его ростом). Жесткое рождения автоколебаний - при малых изменениях параметра происходит «выброс» траектории в область притяжения другого аттрактора.
    • Рождение из одного равновесного состояния трех состояний равновесия - спонтанное нарушение симметрии. Например, при движении шарика в желобе при условии появления в нем бугорка появляется бифуркация, при которой из вырожденного состояния типа «центр» возникают три состояния равновесия - седло S и центры С1 и С2 (рис. 4)

    Рисунок 4 - Рождения из одного состояния равновесия трех при малом изменении параметра (формы желоба): а) форма желоба с одним минимумом и соответствующий фазовый портрет с одним состоянием равновесия типа «центр»; б) форма желоба с двумя минимумами и соответствующий фазовый портрет с тремя состояниями равновесия: «седло» S и «центры» С1 и С2

    Бифуркации рождения (гибели) периодического движения

    Всем бифуркация рождения или гибели состояний равновесия соответствует прохождение одного или нескольких корней через ноль. Такая возможность проиллюстрирована на рис. 5, где изображена гибель двух состояний равновесия типа «седла» и «узла». Аналогичная бифуркация встречается в задачах о конкуренции видов Х1 и Х2, питающихся из одного источника. Соответствующая динамическая система, описывающая численность популяций, задается уравнениями: При ρ 1,2 > 1 в системе возможна «победа» одного из видов. При уменьшении любого из параметров ρ 1,2 до значения, меньшего от 1, при любых начальных условиях будет выживать только один вид (рис. 5, б). Рисунок 5 - Фазовые портреты численности популяций, а) при ρ 1 < 1 , ρ 2 > 1 ; б) при ρ 1,2 > 1

    Бифуркации смены устойчивости периодических движений

    Весомая характеристика бифуркации устойчивости - значения мультипликаторов в критический момент, являющихся коэффициентами усиления (затухания) малых возмущений на фоне периодического движения за период Т. В автономной системе один из мультипликаторов всегда равен единице, поэтому в дальнейшем говорим о других. Если все мультипликаторы по модулю меньшие единицы, то начальное периодическое движение устойчиво. Бифуркации, связанные с исчезновением устойчивости, происходят при таких значениях параметров системы, при которых один или несколько из них равны по модулю 1.

    Обзор

    Бифуркация - это приобретение нового качества в движениях динамической системы при малом изменении её параметров.

    Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой . В противном случае, если такой окрестности не существует, то система называется негрубой .

    Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой .

    Основные методы теории бифуркаций - это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

    Бифуркация равновесий

    В механических системах, как правило, установившиеся движения (положения равновесия или относительного равновесия) зависят от параметров . Значения параметров, при которых наблюдается изменение количества равновесий, называются их бифуркационными значениями . Кривые или поверхности, изображающие множества равновесий в пространстве состояний и параметров, называются бифуркационными кривыми или бифуркационными поверхностями . Прохождение параметра через бифуркационное значение, как правило, сопровождается изменением свойств устойчивости равновесий. Бифуркации равновесий могут сопровождаться рождением периодических и других, более сложных движений.

    Основные понятия

    См. также

    Литература

    1. Андронов А. А., Леонтович Е. А., Гордон И. М., Майер А. Г. Теория бифуркаций динамических систем на плоскости. М .: Наука, 1967.
    2. Баутин Н. Н., Леонтович Е. А. Методы и приёмы качественного исследования динамических систем на плоскости. М .: Наука. Гл. ред. физ.-мат. лит., 1990. 488 с. (Справочная математическая библиотека.)
    3. Четаев Н. Г. Устойчивость движения. М .: Наука. 1955.

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Теория бифуркаций" в других словарях:

      Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Термины «катастрофа» и «теория катастроф» были введены Рене Томом (René Thom) и… … Википедия

      У этого термина существуют и другие значения, см. Теория катастроф (значения). Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких… … Википедия

      Теория катастроф: Теория катастроф раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию особенностей гладких отображений. Катастрофизм (теория катастроф) система… … Википедия

      Основная статья: Теория бифуркаций Каскад бифуркаций (Последовательность Фейгенбаума или сценарий удвоения периода) один из типичных сценариев перехода от порядка к хаосу, от простого периодического режима к сложному апериодическому при… … Википедия

      Совокупность приложений теории особенностей дифференцируемых (гладких) отображений X. Уитни (Н. Whitney) и теории бифуркаций А. Пуанкаре (Н. Poincare) и А. А. Андронова. Назв. введено Р. Томом (R. Thorn) в 1972. К. т. применяется к геом. и физ.… … Физическая энциклопедия

      БИФУРКАЦИЯ, приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. 20 в., затем эта теория была развита А. А. Андроновым и учениками … Энциклопедический словарь

      - (от греч. katastrophe поворот, переворот), 1) совокупность приложений теории особенностей гладких (дифференцируемых) отображений и теории бифуркаций. Поскольку гладкие отображения встречаются повсеместно, повсеместно встречаются и их особенности … Естествознание. Энциклопедический словарь

      В Википедии есть статьи о других людях с такой фамилией, см. Юдович. Виктор Иосифович Юдович Дата рождения: 4 октября 1934(1934 10 04) Место рождения: Тбилиси, СССР Дата смерти … Википедия

      У этого термина существуют и другие значения, см. Ласточкин хвост. Ласточкин хвост (англ. swallow tail) нерегулярная поверхность в трёхмерном пространстве, определить которую можно несколькими эквивалентными способами. Рассмотрим… … Википедия

      Основная статья: Теория бифуркаций Постоянная Фейгенбаума универсальная постоянная, характеризующая бесконечный каскад бифуркаций удвоения периода при переходе к детерминированному хаосу (сценарий Фейгенбаума). Открыта Митчеллом… … Википедия

    Исследование качественных математических моделей сопровождается возникновением качественных вопросов, можно разделить на две категории:

    • Вопросы, относящиеся к поведению системы при фиксированных значениях параметров; важным при этом является качественное понимание характера режимов, устанавливаемых в системе;
    • Вопросы, касающиеся событий, которые происходят в системе при изменении значений параметров. Медленное изменение параметра может привести к тому, что при пересечении некоторого критического значения режим, установившийся в системе, приобретает качественные изменения. При таких перестройках фазовый портрет изучаемой системы, изменяется. Качественные перестройки фазового портрета называются бифуркация .
    Итак, вопрос второго типа предполагают определение бифуркационных значений параметров и описание явлений, происходящих при переходе через критические значения.

    Задачи теории бифуркаций

    Решением вопросов данного типа занимается теория бифуркации, задачами которой являются:
    1. описание всех возможных бифуркации исследуемой системы;
    2. разбиение множества бифуркационных значений параметров на области с разными типами грубых фазовых портретов;
    3. построение для каждой области соответствующего фазового портрета.
    Пример . Рассмотрим возникновение и сущность бифуркации. Пусть имеем динамическую систему, заданную уравнением Приравняем правую часть описания системы к нулю и проанализируем, какие значения может принимать параметр, т.е. как он влияет на поведение системы. Имеем уравнение: x 2 = -r . (*) При r<0 уравнение (*) имеет положительную правую часть. Итак, решений имеем два: Изобразим данный случай графически (рис. 1)
    Рисунок 1 - Поведение исследуемой системы в случае r<0 Первая точка (слева) устойчива, так как из рис. 1 видно, что функция меняет свой знак с «+» на «-». Вторая точка - неустойчива, так как из рис. 1 видно, что функция меняет свой знак с «-» на «+».
    1. При r = 0 уравнение (*) имеет один корень. В этой точке, следовательно мы не можем аналитически определить тип устойчивости. Фазовый график представлен на рис. 2.
    Рисунок 2 - Поведение исследуемой системы в случае r = 0 Из анализа графика рис. 2 можно установить, что функция f(x) при переходе через особую точку не меняет знак, следовательно эта точка является неустойчивой.
    • При r > 0 точек равновесия нету:
    Рисунок 3 - Поведение исследуемой системы в случае r > 0 Итак, полустойкие точка равновесия исчезает, как только становится положительным. Так как характеристики точек равновесия меняются со временем, говорят, что динамическая система имеет бифуркацию. В данном случае значение параметра меняются от отрицательных через ноль к положительным и характеристики стационарных точек изменяются так, как показано на рис. 1-3. Следовательно, в точке происходит бифуркация.

    Точка бифуркации

    Точка бифуркации - это такое состояние системы, при котором даже незначительное возмущение может привести к глобальным изменениям. Аналогично выражения «взмах крыла бабочки привел к урагану в Калифорнии». Рыцарь на распутье - это , космический аппарат, летящий между Землей и Луной и не имеющий необходимой скорости, чтобы выйти из гравитационного поля одной или другой планеты - точка бифуркации. Станет он спутником Земли или Луны, зависит от микроскопических возмущений типа солнечного ветра или микрометеоритов. На фондовом и валютном рынках уровни поддержки или сопротивления являются точками бифуркации. Ценные бумаги или валюта, достигнув их, или сорвутся вниз, либо пойдут вверх и это зависит от очень незначительных факторов. Август 1991 г. - точка бифуркации для СССР. Точи бифуркации часто встречаются в потоках газов и жидкости. Поэтому так трудно предсказать погодные условия.
    Предсказание погодных условий при помощи точек бифуркации. Термин «бифуркация» буквально означает «раздвоение», но применяется в более широком смысле для обозначения всех возможных качественных перестроек некоторого объекта при изменении параметра, от которого он зависит. Существуют разные . В примере для функции значение параметра ε = 0 соответствует точке бифуркации, так как при переходе ε от отрицательных значений к положительным стационарное состояние х=0 стало неустойчивым и дополнилось парой устойчивых состояний - при отрицательных значениях ε стационарные состояния вообще отсутствуют, а в точке ε = 0 происходит рождение таких состояний, один из которых устойчив, а другой - неустойчивый. В обоих случаях значения ε = 0 соответствуют точкам бифуркации, хотя и разных типов. Проблемой исследования точек бифуркации является их классификация и анализ поведения семейств функций вблизи структурно неустойчивых особых точек.