Проектирование и строительство домов

Проектирование и строительство домов

» » Применение фенола в медицине кратко. Фенолы - это что? Свойства и состав фенола

Применение фенола в медицине кратко. Фенолы - это что? Свойства и состав фенола


Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

Химические свойства

1. Взаимодействие с щелочными металллами.

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

фенолят натрия

2. Взаимодействие со щелочью (фенол – слабая кислота)

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

3. Галогенирование .

4. Нитрование

5. Качественная реакция на фенол

3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

Применение

После открытия фенола, применение ему нашли быстро - для дубления кож, в производстве синтетических красителей. Затем основным потребителем фенола на какое-то время стала медицина. Развитие производства фенопластов в конце 19-го века, в первую очередь фенол- формальдегидных смол, дало активный толчок развитию рынка фенола. В годы первой мировой войны фенол широко использовался для производства сильного взрывчатого вещества - пикриновой кислоты.

Разбавленные водные растворы фенола (карболка (5%)) применяют для дезинфекции помещений, белья. Являясь антисептиком, широко применялся в европейской и американской медицине в период 2 мировой войны, но из-за высокой токсичности в настоящее время использование сильно ограничено. Широко используется в молекулярной биологии и генной инженерии для очистки ДНК. В смеси с хлороформом ранее использовался для выделения ДНК из клетки. В настоящее время этот метод не актуален, из-за наличия большого количества специализированых китов для выделения.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин, а также гидрохинон (пара-дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.



Это вещество было открыто в 1771 году. Сразу после открытия его стали использовать в качестве красителя. Текстильщики красили им свои ткани. В 1834 году немецкий химик Фридлиб Рунге обнаружил в продуктах перегонки каменноугольной смолы белое кристаллическое вещество с характерным запахом, но ему не удалось определить его состав. И только в 1841 году Огюст Лоран установил его формулу.

  • Определение фенолов.
Соединения, в которых ароматический радикал фенил С6Н5- непосредственно связан с гидроксильной группой, отличаются по свойствам от ароматических спиртов, настолько, что их выделяют в отдельный класс органических соединений, называемый фенолами.

  • Классификация и изомерия фенолов.
В зависимости от числа ОН-групп различают одноатомные фенолы (например, вышеприведенные фенол и крезолы) и многоатомные . Среди многоатомных фенолов наиболее распространены двухатомные:
Как видно из приведенных примеров, фенолам свойственна структурная изомерия (изомерия положения гидроксигруппы). Следствием полярности связи О–Н и наличия неподеленных пар электронов на атоме кислорода является способность гидроксисоединений к образованию водородных связей
Это объясняет, почему у фенола довольно высокие температуры плавления (+43 ) и кипения (+182 ). Образование водородных связей с молекулами воды способствует растворимости гидроксисоединений в воде:
Способность растворяться в воде уменьшается с увеличением углеводородного радикала и от многоатомных гидроксисоединений к одноатомным. Метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин смешиваются с водой в любых соотношениях. Растворимость фенола в воде ограничена.

Для более полного представления о физических свойствах посмотрите видеоролик:



  • Строение молекулы фенола.
  • неподеленная электронная пара атома кислорода притягивается 6-ти электронным облаком бензольного кольца, из – за чего связь О – Н еще сильнее поляризуется. Фенол- более сильная кислота, чем вода и спирты.
  • В бензольном кольце нарушается симметричность электронного облака, электронная плотность повышается в положении 2, 4, 6. Это делает более реакционноспособными связи С - Н в положениях 2, 4, 6. и? – связи бензольного кольца.
Рассмотрите "Взаимное влияние атомов в молекуле фенола".


  • Химические свойства фенола.
I. Рассмотрим реакции фенола по ОН-группе:

а) кислотные свойства:
Кислотность фенола существенно выше, чем у предельных спиртов; он реагирует как с щелочными металлами, так и с их гидроксидами (отсюда старинное название "карболовая кислота"):


Кислотные свойства у фенола выражены сильнее, чем у спирта С 2 Н 5 ОН. Фенол слабая кислота (карболовая).
Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол; такая реакция доказывает, что фенол — более слабая кислота, чем угольная и сернистая:

C 6 H 5 ONa + СО 2 + Н 2 О → С 6 Н 5 ОН + NaHCO 3 .

! Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.



б) Образование сложных эфиров.
В отличие от спиртов, фенолы не образуют сложных эфиров при действии на них карбоновых кислот; для этого используются хлорангидриды кислот:

С 6 Н 5 ОН + СН 3 ― CO ― Cl → С 6 Н 5 ― О― СО― СН 3 + HCl .


II. Реакции фенола по бензольному кольцу:
  • взаимодействие с бромной водой:
Реакции электрофильного замещения в феноле протекают значительно легче, чем в ароматических углеводородах. Поскольку ОН группа является ориентантом I рода, то в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и пара-положениях (при галогенировании, нитровании, поликонденсации и т.д.). Так, при действии бромной воды на фенол три атома водорода замещаются на бром, и образуется осадок 2,4,6-трибромфенола:


  • взаимодействие с азотной кислотой:
    При нитровании фенола концентрированной азотной кислотой три атома водорода замещаются на нитрогруппу, и образуется 2,4,6-тринитрофенол (пикриновая кислота):
  • реакция поликонденсации
При нагревании фенола с формальдегидом в присутствии кислотных или основных катализаторов происходит реакция поли­конденсации, и образуется фенолформальдегидная смола — высокомолекулярное соединение с разветвленной структурой типа: III. Качественная реакция на фенолы
  • С 6 Н 5 ОН + FeCl 3 —> фиолетовое окрашивание
  • С 6 Н 5 ОН + Br 2 —> белый осадок
  • С 6 Н 4 (ОН) 2 + FeCl 3 —>зеленое окрашивание
  • С 6 Н 3 (ОН) 3 + FeCl 3 —> красное окрашивание



IV. Окисление.
Фенолы легко окисляются даже под действием кислорода воздуха. Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона также образуется хинон :

  • Получение фенола.
Получение фенола.
1 . Получение из галогенбензолов . При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

С 6 Н 5 ― С l + 2 NaOH C 6 H 5 ― ONa + NaCl + Н 2 О.

2. При каталитическом окислении изопропилбензола (кумола) кислородом воздуха образуются фенол и ацетон:

(1)

Это — основной промышленный способ получения фенола.

3. Получение из ароматических сульфокислот. Реакция про­водится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

В зависимости от числа групп ОН фенолы делятся на: одноатомные и

двухатомные фенолы:

трехзамещенные фенолы: (пирогаллол), симметричный и несимметричный

Номенклатура и изомерия.

Названия фенолов составляют с учетом того, что для родоначальной структуры по правилам ИЮПАК сохранено тривиальное название «фенол». Нумерацию атомов углерода бензольного кольца начинают от атома, непосредственно связанного с группой ОН и продолжают в такой последовательности, чтобы имеющиеся заместители получили наименьшие номера.

Строение фенола, взаимное влияние бензольного кольца и гидроксильной группы.

В молекуле фенола бензольное кольцо и группа ОН взаимно влияют друг на друга. Неподеленная пара электронов атома кислорода группы ОН находится в р, π-сопряжение с бензольным кольцом. Поэтому в феноле группа ОН, помимо отрицательного индуктивного эффекта проявляет положительный мезомерный эффект. Величина +М- эффекта больше, чем I - эффекта. Поэтому группа ОН является электронодонором (Э.Д) по отношению к бензольному кольцу и повышает полярность связи О – Н и, следовательно происходит увеличение подвижности атома водорода и тем самым усиливаются кислотные свойства.

Кроме того, +М- эффект группы ОН повышает электронную плотность в орто пара- положениях бензольного кольца и в положениях 2, 4, 6 возникает частичный отрицательный заряд что облегчает реакции электрофильного замещения.

Кислотный центр

I < +М, ЭД

Физические свойства.

Фенол – это бесцветное кристаллическоевещество с резким запахом, плохо растворим в воде при обычной температуре, а при температуре выше 66 0 смешивается с водой в любых соотношениях. На воздухе окисляется и становится розовым. Фенол – токсичное вещество, вызывает ожоги кожи, его 10% водный раствор называется карболовой кислотой и применяется как антисептик.

Химические свойства.

Химические свойства фенолов обусловлены наличием группы ОН и бензольного кольца.

Реакции с участием гидроксильной группы.

    Диссоциация в водных растворах:

фенолят - ион

    Взаимодействие с активными металлами (сходство с простыми спиртами):

    Взаимодействие со щелочами (отличие от спиртов):

Образующиеся феноляты легко разлагаются при действии кислот. Поэтому при действии Н 2 СО 3 (СО 2 + Н 2 О) и др. кислот феноляты легко разлагаются и обратная реакция не возможна.

С 6 Н 5 ОNа + СО 2 + Н 2 О  С 6 Н 5 ОН + NаНСО 3

    Взаимодействие с галогеналканами с образованием простых эфиров:

метилфениловый эфир

    Взаимодействие с ангидридами кислот с образованием сложных эфиров:

фенилацетат

    Взаимодействие с солями (хлоридом железа III). Данная реакция является качественной реакцией на фенольный гидроксид

Каждый фенол дает свое характерное окрашивание в качественной реакции с FеС1 3:

Фенол  Фиолетовое, Гидрохинон  Грязно-зеленое,

Пирокатехин  Зеленое, Пирогаллол  Красное.

Резорцин  Фиолетовое

3С 6 Н 5 ОН + FеС1 3  (С 6 Н 5 О) 3 Fе + 3НС1

Фиолетовое окрашивание

    Р-ция восстановления с цинковой пылью при нагревании:

С 6 Н 5 ОН + 3Н 2 С 6 Н 12 + ZnО

      .Р-ции по бензольному кольцу ( S Е )

Как было сказано выше, –ОН группа – ориентант I рода, облегчает реакции по бензольному кольцу, направляя атаку электрофильного реагента преимущественно в орто- и пара- положения:

    Галогенирование фенола:

2,4,6-трибромфенол

Происходит обесцвечивание бромной воды и образование белого осадка. Эта реакция используется как качественная реакция на фенол.

    Нитрование фенола. Под действием 20% раствора азотной кислоты на холожу фенол превращается в смесь орто- и пара- нитрофенол:

2-нитрофенол – 40% 4-нитрофенол – 10%

Для получения 2,4,6-тринитрофенола (пикриновой кислоты) фенол предварительно растворяют в концентрированной серной кислоте, а зате6м подвергают нитрованию концентрированной азотной кислотой:

пикриновая кислота

    Сульфирование фенола:

    Р-ция конденсации . При взаимодействии с формальдегидом фенол образует полимеры различного строения (линейного, разветвленного, сетчатого) – фенолформальдегидные смолы.

Фрагмент

фенолоформальдегидной

5.Р-ция гидрирования (восстановление):

    Окисление. Фенолы легко окисляются под действием кислорода воздуха:

хинон

Многие биологические вещества содержат «хиноидную» систему: витамин К 2 (фактор свертываемости крови), окислительно-восстановительные ферменты тканевого дыхания – убихиноны.

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий