Проектирование и строительство домов

Проектирование и строительство домов

» » Блок схема работы программы охранной сигнализации. Расчет принципиальной электрической схемы ячейки сети периферийного оборудования системы пожарной сигнализации

Блок схема работы программы охранной сигнализации. Расчет принципиальной электрической схемы ячейки сети периферийного оборудования системы пожарной сигнализации

Современная разработка электроники для удаленных модулей охранно-пожарной системы позволила добиться наилучших показателей надежности и отличной помехозащищенности электронной системы в целом. По вашему техническому заданию в компании «Разработка ПРО» может быть разработана любая электроника и выполнено последующее производство электронного оборудования на заказ, с качественной поддержкой проекта разработчиком. Все работы выполняются в разумные сроки по оптимальным ценам, возможный вариант разработки устройств всегда выбирается с учетом пожеланий заказчика.

Предлагаемое вашему вниманию электронное устройство было разработано для создания комплексной охранной системы сигнализации с использованием промышленной шины CAN, применяемой для обмена данными между всеми устройствами в системе. Система состоит из следующих устройств: концентратор и устройства управления силовым оборудованием, а также контроллеры шлейфов и датчиков. Применение шины CAN позволило обеспечить надежность в работе и наилучшую помехозащищенность системы. Промышленная шина CAN, в настоящее время находящая все более широкое применение в управлении автомобильными приборами, исключает сбои в пакетах данных, получаемых от различных устройств в промышленных условиях, осложненных помехами от силового оборудования и силовых кабелей.

Модуль шлейфов и датчиков (контроллер шлейфов) позволяет контролировать несколько шлейфов (с герконами) и другие датчики: цифровой датчик температуры, датчик относительной влажности воздуха, датчик дыма (задымления), пожарный датчик, оптический датчик открытия корпуса. Модуль позволяет воспроизводить звуковые сигналы, измерять аналоговое напряжение, определять ключи Dallas iButton и автоматически управлять магнитом или замком открывания двери.

Система сигнализации состоит из следующих модулей:

1. Концентратор;

2. Модуль датчиков (контроллер датчиков и шлейфов);

3. Модуль управления;

4. Усилитель (репитер CAN).

Принципиальная схема модуля "Контроллер шлейфов и датчиков охранной сигнализации"

Разработка электроники выполнена с применением (в качестве управляющего) микроконтроллера Atmel AVR 8-bit AT90CAN32. Выбор обусловлен наличием встроенного аппаратного интерфейса CAN. Для питания модуля использован преобразователь напряжения MAX5035BASA ввиду его высокой экономичности и надежности. Трансивер CAN - MCP2551 от Microchip обеспечивает формирование и чтение логических уровней на шине CAN. В качестве источников стабильного тока для питания датчиков дыма применены стабилизаторы напряжения LM317LBD в соответствующем включении. Преобразователь питания 5В/12В для датчиков дыма собран на уникальной в своем роде микросхеме LM2703MF, которая по достоинству оценена многими разработчиками и весьма распространена в настоящее время. Другие компоненты: звуковой излучатель HC0905A, газовый разрядник EC90X.

Модуль шлейфов и датчиков состоит из двух отдельных печатных плат, собираемых на латунных стойках и соединяющихся стандартным межплатным разъемом. Такое решение при разработке электронного устройства позволило более полно использовать внутренне пространство корпуса, и, как следствие, дало возможность применить стандартный корпус GAINTA с меньшими габаритами и стоимостью. На фото показаны платы модуля, соединенные только разъемом, без стоек.

Основная печатная плата модуля шлейфов и датчиков, размещенная в герметичном корпусе, содержит все основные схемные компоненты за исключением разъемов и клеммников для внешних кабелей, а также она не имеет преобразователя питания на 12В для внешних датчиков, требующих для своей работы указанного питающего напряжения.

Верхняя печатная плата модуля шлейфов и датчиков с установленными быстрозажимными разъемами для подключения охранных шлейфов и кабелей от датчиков. Для подключения шины CAN предусмотрены винтовые клемники. Также на фото виден сигнальный зеленый светодиод (сверху) и оптическая пара - ИК-светодиод и ИК-фототранзистор (снизу). Оптопара используется в качестве оптического датчика открытия корпуса.

На обратной стороне верхней печатной платы размещается управляемый преобразователь питания для внешних датчиков, требующих питающего напряжения 12В. Компоненты преобразователя питания могут не монтироваться на плату, если не предполагается подключение к модулю каких-либо специальных датчиков или внешних приборов, требующих питания 12В.

Здесь показаны обе платы модуля шлейфов и датчиков, установленные в герметичный корпус с использованием латунных стоек для печатных плат (диаметр 6мм, резьба 3мм).

Всего в модуле имеется 11 каналов, для каждого из которых отдельно задается полная информация, включающая идентификаторы района, объекта, места установки и типа датчика, подключенного к каналу.

Модуль датчиков имеет пять конфигурируемых каналов N0-N4, к которым можно подключать различные типы шлейфов или датчиков: зонды ключей iButton (шлейф шунтируется резистором 30кОм для контроля на обрыв линии), цифровые датчики температуры DS18S20 (без шунта), цифровые датчики относительной влажности воздуха HIH-4010 (без шунта), согласующие устройства для измерения напряжения сети переменного тока (без шунта), пожарные датчики ИП114-5-А, шлейфы с нормально замкнутыми герконами, шлейфы с нормально разомкнутыми герконами.

Пожарные датчики и оба типа шлейфов с герконами могут быть трех подтипов: без контрольных резисторов, с одним последовательно включенным резистором, а также с одним последовательно включенным резистором и шунтирующими резисторами на каждом герконе. Во всех конфигурациях используются резисторы номиналом 3кОм. Выбор типа датчика и его подтипа производится командами с управляющего компьютера, также как и любые другие настройки системы в целом. Все шлейфы и датчики контролируются на обрыв и короткое замыкание. Модули системы не имеют каких-либо элементов управления – кнопок, переключателей, перемычек и т.п.

Модуль датчиков имеет два специальных канала N8-N9, к которым можно подключать датчики дыма ИП212-58 (шлейфы шунтируются резистором 30кОм для контроля на обрыв линии). На каждый такой вход можно подключить до 10 датчиков дыма. В модуле установлен встроенный оптический датчик открытия корпуса, сообщения от которого передаются по отдельному каналу N10. Также в модуле датчиков имеются три канала N5-N7, предназначенных для подключения любых линий от датчиков с выходами типа «сухой контакт», замкнутых в нормальном состоянии. Модуль датчиков оснащен звуковым излучателем, который может настраиваться на автоматическую подачу звуковых сигналов (например, при прикладывании ключа iButton) или управляться командами с компьютера.

При разработке электроники в этом устройстве был предусмотрен выход для подключения электромагнитного реле, которое может управляться автоматически (при прикладывании ключа iButton с разрешенным для конкретного модуля кодом) или командами с компьютера.

Для контроля состояния системы предусмотрен выход на спаренный двухцветный (встречно-параллельная схема включения) светодиод. Возможно подключение двух отдельных светодиодов. В любом случае каждый светодиод может отдельно управляться либо автоматически, либо командами с компьютера. В случае автоматического управления выбранный светодиод вспыхивает при прикладывании к считывателю ключа iButton. Входы модуля датчиков защищены от воздействия статического электричества. На плате модуля установлен газовый разрядник и резисторы снятия нарастающего статического электричества с протяженных линий связи.

Назначение регистров модуля датчиков в области RAM

000. Данные ADC канала 0.

001. Данные ADC канала 1.

002. Данные ADC канала 2.

003. Данные ADC канала 3.

004. Данные ADC канала 4.

005. Данные ADC канала 8.

006. Данные ADC канала 9.

007. Данные ADC линии питания CAN.

009. Сброс датчика дыма на канале 8. Нормальное состояние – 0, для выполнения сброса требуется записать 1.

010. Сброс датчика дыма на канале 9. Нормальное состояние – 0, для выполнения сброса требуется записать 1.

011. Управление реле. Выключено – 0, включено – 1. По умолчанию при запуске устройства включается режим 0.

012. Режим работы светодиода LED1. Могут быть использованы следующие значения: 0 – светодиод погашен, 1 – светодиод включен постоянно, 2 – светодиод мигает (пауза 1,5 сек., вспышка 0,5 сек.), 3 – светодиод мигает (пауза 0,5 сек., вспышка 0,5 сек.), 4 – однократная вспышка светодиода длительностью 0,5 сек (по окончании автоматически выбирается режим 0 – светодиод погашен). По умолчанию при запуске устройства включается режим 0.

013. Режим работы светодиода LED2. Управление аналогично управлению светодиодом 1. По умолчанию при запуске устройства включается режим 0.

014. Управление звуком. Указывается длительность звука в ms x 10. Для вывода звука длительностью 200ms следует записать значение 20. Вывод звука не ограничивает работоспособности устройства.

015. Управление внутрисистемным светодиодом. 0 – светодиод погашен, 1 – светодиод включен постоянно, 2 – светодиод мигает (пауза 1 сек., вспышка 1 сек.). По умолчанию при запуске устройства включается режим 2.

016. Признак отсутствия перезапуска устройства. При запуске устройства сбрасывается 0. Признак может быть установлен программно в любое требуемое значение.

017. Резервная область до регистра 050 включительно.

051. Начало области кодов ключей iButton. 75 ключей по 6 байт каждый, всего 450 регистров, последний используемый регистр – 499.

Назначение регистров модуля датчиков в области EEPROM

500. Собственный адрес устройства (по умолчанию 255).

501. Режим работы устройства: 1 – модуль датчиков, 0 – модуль управления. Для этого регистра используется только чтение.

502. Номер версии программного обеспечения (старший байт). Для этого регистра используется только чтение.

503. Номер версии программного обеспечения (младший байт). Для этого регистра используется только чтение.

504. Конфигурация резисторов и количество датчиков на шлейфе канала N0. Значение десятков в этом числе определяет конфигурацию резисторов: 0 – без резисторов, 1 – с одним последовательным резистором, 2 - с одним последовательным резистором и шунтирующими резисторами на каждом датчике. Значение единиц в этом числе определяет количество датчиков на шлейфе. Например, число 24 означает, что выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике) при четырех подключенных датчиках.

505. Конфигурация резисторов и количество датчиков на шлейфе канала N1. Аналогично регистру 504 для конфигурирования канала N0.

506. Конфигурация резисторов и количество датчиков на шлейфе канала N2. Аналогично регистру 504 для конфигурирования канала N0.

507. Конфигурация резисторов и количество датчиков на шлейфе канала N3. Аналогично регистру 504 для конфигурирования канала N0.

508. Конфигурация резисторов и количество датчиков на шлейфе канала N4. Аналогично регистру 504 для конфигурирования канала N0.

509. Автоматический сброс датчиков дыма канала N8.

510. Автоматический сброс датчиков дыма канала N9.

511. Автоматическая подача звуковых сигналов.

512. Автоматическое управление реле (ключом iButton).

513. Автоматическое управление светодиодом 1 (ключом iButton).

514. Автоматическое управление светодиодом 2 (ключом iButton).

515. Увеличение всех периодов отправки сообщений в N раз. Значения 0 и 1 не увеличивают периоды отправки. Значение 2 - увеличивает все периоды в 2 раза, значение 3 - увеличивает все периоды в 3 раза и так далее.

516. Включение дополнительного преобразователя напряжения на 12В для питания внешних подключаемых датчиков (1 – вкл., 0 – выкл.).

551. Начало области идентификаторов и выбора типов датчиков каналов. Всего 11 каналов по 9 байт каждый, итого 99 байт, последний используемый регистр - 649. Назначение информации для каждого канала: район – 2 байта, объект – 2 байта, место – 4 байта, тип датчика – 1 байт.

650. Начало области кодов ключей iButton. 25 ключей по 6 байт каждый, всего 150 регистров, последний используемый регистр – 799.

800. Начало области значений периодов отправки сообщений по типам (периоды отправки определяются отдельно для каждого канала). Всего 11 каналов по 12 типов сообщений, итого 132 регистра, последний используемый регистр – 931. Записываются значения отправки в секундах. Максимальное значение 255 секунд. Множитель в регистре N515 позволяет увеличивать периоды отправки сообщений до 255 раз. Таким образом, максимальное значение периодов отправки может быть увеличено до 65025 секунд, что составляет более 18 часов.

Выбор типа датчика

0 – Датчик отсутствует, сообщения от соответствующего канала не передаются (канал выключен).

1 – Датчики (герконы) с нормально замкнутыми контактами. Шлейфы могут контролироваться на обрыв и короткое замыкание, если выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике). Шлейфы могут контролироваться только на короткое замыкание, если выбрана конфигурация номер 1 (с одним последовательным резистором). Шлейфы не контролируются на обрыв и короткое замыкание, если выбрана конфигурация номер 0 (без резисторов). Датчики могут принимать нормальное состояние и состояние срабатывания. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии.

2 – Датчик дыма. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии. Требует установки шунтирующего резистора сопротивлением 30кОм. После срабатывания датчика и передачи соответствующего сообщения, датчик в течение 3-секунд автоматически сбрасывается в исходное состояние, соответствующее норме, путем прерывания подачи питания на датчик, если в регистрах настройки установлено разрешение на автоматический сброс. В ином случае сброс датчика в исходное состояние выполняется записью команды в соответствующий регистр управления.

3 – Ключ iButton. Шлейф контролируется на обрыв. Выдаются сообщения: 1 – нормальное состояние, 7 – код ключа, 3 – короткое замыкание, 4 – обрыв линии. В случае распознавания и передачи кода ключа поле данных сообщения будет содержать 6 байт кода, считанного с ключа. В соответствии с настройками возможно автоматическое управление светодиодами и выводом звука. Если код ключа совпадает с одним из кодов ключей, записанных в память модуля датчиков в области EEPROM (25 ключей) или RAM (75 ключей), то в соответствии с настройками возможно автоматическое управление реле.

4 – Датчик температуры Dallas DS18S20. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 5 – температура, 3 – короткое замыкание, 4 – обрыв линии. Не требует установки шунтирующего резистора. В случае передачи температуры поле данных сообщения будет содержать 2 байта кода (остальные 4 байта всегда будут равны 0). Первый байт определяет знак температуры: 0 – выше нуля, 1 – ниже нуля. Второй байт содержит значение температуры в градусах Цельсия.

5 – Датчик влажности Honeywell HIH-4010. Шлейф контролируется на обрыв и короткое замыкание. Выдаются сообщения: 6 – влажность, 3 – короткое замыкание, 4 – обрыв линии. Не требует установки шунтирующего резистора. В случае передачи сообщения о влажности поле данных будет содержать 1 байт кода – значение относительной влажности воздуха. Остальные 5 байт в поле данных всегда будут равны 0.

6 – Переменное напряжение (измеряется через подключаемый к соответствующему входу адаптер с гальванической развязкой). Шлейф контролируется на короткое замыкание. Выдаются сообщения: 1 – нормальное состояние, 3 – короткое замыкание, 4 – обрыв линии, 8 – напряжение на линии. Не требуется установка дополнительного шунтирующего резистора (он установлен на плате согласующего устройства). В случае передачи сообщения «напряжение на линии» поле данных будет содержать 1 байт кода – значение переменного напряжения на входе адаптера, деленное на 10. То есть, при напряжении 220В будет передаваться 022, при напряжении 430В передается 043. Остальные 5 байт в поле данных всегда будут равны 0.

7 – Пожарный датчик. Работает и контролируется аналогично шлейфу типа 1 (датчики с нормально замкнутыми контактами). Для этого типа датчиков также требуется выбирать конфигурацию подключенных контрольных резисторов и определять количество датчиков.

8 - Датчики (герконы) с нормально разомкнутыми контактами. Шлейфы могут контролироваться на обрыв и короткое замыкание, если выбрана конфигурация номер 2 (с одним последовательным резистором и шунтирующими резисторами на каждом датчике). Шлейфы могут контролироваться только на короткое замыкание, если выбрана конфигурация номер 1 (с одним последовательным резистором). Шлейфы не контролируются на обрыв и короткое замыкание, если выбрана конфигурация номер 0 (без резисторов). Датчики могут принимать нормальное состояние и состояние срабатывания. Выдаются сообщения: 1 – нормальное состояние, 2 – срабатывание, 3 – короткое замыкание, 4 – обрыв линии.

9 – Оптический датчик открытия корпуса (только для канала 10).

Типы сообщений модулей датчиков:

1. Нормальное состояние;

2. Срабатывание датчика;

3. Короткое замыкание шлейфа;

4. Обрыв линии шлейфа;

5. Температура;

6. Относительная влажность воздуха;

7. Код ключа iButton;

9. Включено;

10. Выключено;

11. Ток в линии.

Удаленное обновление программного обеспечения модулей

На всех используемых в системе модулях установлены специальные программы-загрузчики, позволяющие удаленно обновлять рабочую программу любого модуля, не нарушая работу системы в целом. Обновление программы происходит по стандартному протоколу X-modem с контролем и коррекцией ошибок, а также с проверкой правильности записи программы в памяти микроконтроллера.

Принципиальная схема двухуровневой системы охраны, которая построена применением AVR микроконтроллеров серии ATMega. 1-й уровень охраны - кодовый замок. 2-й уровень охраны - устройство охраны. Две функциональные платы, входящие в систему выполнены на базе микроконтроллеров ATmega 8535.

Структурная схема

Микроконтроллеры (семейства AVR, MCS-51 и др.) со своей архитектурой, программными и аппаратными ресурсами, как цифровые кубики идеально подходят для разработки различных устройств охраны, сигнализации, кодовых замков и пр.

Рис. 1. Структурная схема системы охраны.

В системе (рис. 1) имеется две основных составных части: кодовый замок А2, и устройство охраны А1. Устройство охраны А1 имеет 24 независимых входных линии к которым подключены концевые выключатели S1...S24. Данные выключатели контролируют состояние окон 01...05, двери Д1, люков Л1, Л2.

Количество вышеуказанных объектов контроля может быть разным, и привязано к каждому конкретному помещению или охраняемому периметру.

Количество применяемых устройств охраны А1 и кодовых замков А2 тоже ничем не ограничено и определяется условиями охраны, степенью защиты, особенностями зданий, помещений и др. Понятно, что концевые выключатели S1...S24 могут контролировать и те двери, люки доступ к которым ограничен кодовым замком (или кодовыми замками) А2. Принципиальная схема кодового замка представлена на рис. 2.

Принципиальная схема

Рассмотрим работу устройства охраны. Внешними (выносными) элементами по отношению к устройству являются 24 концевых выключателя (S1...S24), которые позволяют контролировать состояние 24 объектов (например, дверь). Один концевой выключатель контролирует состояние одной двери. Если дверь закрыта - концевой выключатель разомкнут.

Пользователь (оператор, диспетчер) визуально состояние двери может проконтролировать по состоянию индикатора.

Если дверь открыта - концевой выключатель замкнут. Индикатор - периодически мигает. Если дверь закрыта - концевой выключатель разомкнут. Индикатор - не горит (погашен). Пусть концевой выключатель S1 установлен в двери № 1. Пусть концевой выключатель S2 установлен в двери № 2 и т. д.

Если открыта дверь № 1, то периодически мигает индикатор HL2 (если дверь № 1 закрыта индикатор HL2 - погашен). Если открыта дверь № 2, то периодически мигает индикатор HL3 (если дверь № 1 закрыта индикатор HL3 - погашен) и т. д.

Автор, не будет останавливаться на каком-то конкретном конструктивном исполнении установки концевого выключателя, а так же конструкции самого устройства. В интерфейс контроля и управления устройства входят: тумблеры SA1, SA2, индикаторы HL1...HL25. Конструктивно, все вышеуказанные элементы целесообразно разместить на отдельной панели управления.

Рис. 2. Принципиальная схема кодового замка для системы охраны.

Элементы интерфейса управления устройства имеют следующее назначение:

  • SA1 (ОХРАНА) - тумблер сигнализации. При установке данного тумблера в положение "ВКЛ" - устройство ставится под охрану. Устройство ставится под охрану, через ~ 10 сек. с момента установки тумблера SA1 в положение "ВКЛ" из положения "ВЫКЛ". После установки под охрану, сигнализация срабатывает через ~ 10 сек с момент замыкания любого концевого выключателя S1...SA24.
  • SA2 - тумблер выключения звука. Данный тумблер функционирует только в режиме контроля состояния дверей. Тумблер SA1 должен быть установлен в положении "ВЫКЛ". При установке тумблера SA2 в положение "ВКЛ" при открытии любой двери пьезоэлектрическим излучатель ВА1 сразу выдаст звуковой сигнал, длительностью ~ 2 сек. Если данный тумблер в положение "ВЫКЛ", то при открытии любой двери, будет периодически мигать только соответствующий индикатор, пьезоэлектрическим излучатель ВА1 - будет выключен.
  • HL1 - индикатор активации режима охраны. Если устройство находится в режиме "охрана", данный индикатор - горит, если в режиме " контроль состояния дверей" данный индикатор - погашен.

Сигнализация срабатывает - это значит: реле К1 - постоянно включено. Выводы 5 и 6, а так же 2 и 3 данного реле - замкнуты. Пьезоэлектрическим излучатель ВА1 - включается и выключается с периодом ~ 1 сек. Для выключения сигнализации необходимо тумблер SA1 установить в положение "ВЫКЛ".

Рассмотрим основные, функциональные узлы принципиальной схемы устройства. Основой устройства служит микроконтроллер DD1, рабочая частота которого задается генератором с внешним резонатором ZQ1 на 10 МГц.

Рис. 3. Принципиальная схема устройства охраны на микроконтроллере.

К порту PD микроконтроллер DD1 подключены выключатели SA1, SA2 пьезоэлектрическим излучателем ВА1, индикатор HL1, ключ на транзисторах VT1, VT2 для управления реле К1. К портам РВ, РА, PC микроконтроллера DD1 подключены концевые выключатели S1...S24 и индикаторы HL2...HL25.

Питание на данные индикаторы поступает через ключ на транзисторе VТЗ, который управляется с вывода 21 микроконтроллера DD1. Резисторы R10...R17, R20...R27, R28...R35 - токоограничительные для индикаторов HL2...HL25. Резистор R8 - токоограничительный для индикатора HL1.

Реле К1 управляется соответственно с вывода 14 микроконтроллера DD1. Питающее напряжение +12 В и +5В поступает на устройство с соединителя XI. Конденсатор С5 фильтрует пульсации в цепи питания +5 В. Блокировочный конденсаторы С4 стоит по цепи питания микроконтроллера DD1.

В алгоритме работы устройства можно выделить два режима работы: режим контроля состояния дверей и режим охраны. Рассмотрим алгоритм работы устройства в режиме контроля состояния дверей. Пусть все двери охраняемого объекта закрыты. Тумблер SA1 в положении "ВЫКЛ".

Тумблер SA2 в положении "ВКЛ". После подачи питания на устройство, при инициализации во все разряды портов РВ, РА, PC микроконтроллера DD1 записываются лог. 1. Ключи на транзисторах VT1...VT2 закрыты, индикатор -HL1 - погашен.

Индикаторы HL2...HL25 -погашены. Концевые выключатели S1...S24 -разомкнуты. С вывода 21 микроконтроллера DD1 генерируется периодический сигнал (меандр) с периодом порядка 1 с. Если, открыть дверь № 1, включится концевой выключатель S5.

Индикатор HL2 будет периодически мигать с периодом ~ 1 сек. Пьезоэлектрический излучатель ВА1 выдаст звуковой сигнал длительностью ~ 3 сек.

Если, открыть дверь № 2, включится концевой выключатель S6. Индикатор HL2 будет периодически мигать с периодом ~ 1 сек. Пьезоэлектрический излучатель ВА1 выдаст звуковой сигнал длительностью ~ 2 сек и т. д. Если установить тумблер SA2 в положении "ВКЛ", то при замыкании любого концевого выключателя (при открывании любой двери) будет только мигать соответствующий индикатор.

Рассмотрим работу устройства в режиме охраны. Пусть все двери охраняемого объекта закрыты. Тумблер SA1 установлен в положении "ВЫКЛ".

Устройство переходит в режим охраны, через ~10 сек с момента установки тумблера SA1 в положении "ВКЛ". За это время необходимо закрыть все двери и покинуть охраняемый объект. Понятно если периметр охраняемого объекта достаточно большой и за 10 сек. невозможно закрыть все двери, то все двери необходимо закрыть до постановки объекта под охрану.

Если в режиме охраны включится любой из концевых выключателей S1...S24 (будет открыта любая дверь) при этом на соответствующем выводе портов РВ, РА, PC микроконтроллера DD1 будет присутствовать сигнал уровня лог.0. то через ~ 10 сек. включится звуковая сигнализация (пьезоэлектрический излучатель ВА1). При этом на выводе 14 микроконтроллер DD1 установит уровень лог.0 (Включится реле К1).

Если на охраняемый объект проникает "свой", то ему необходимо за ~ 10 сек и установить тумблер SA1 в положении "ВЫКЛ", иначе сработает сигнализация. Понятно, что доступ к выключателю SA1 должен быть ограничен.

Если на охраняемый объект (через вскрытую дверь) проникает "чужой", то ему необходимо за ~10 сек. найти выключатель SA1 и установить его в положении "ВЫКЛ". Сигнализация включится и в том случае если любой из концевых выключателей S1...S24 включится на короткое время (например, закрыть и тут же закрыть дверь). Контакты реле К1 можно использовать для замыкания цепей управления или питания различных исполнительных устройств, например для механизма блокировки дверей или для включения сирены (ревуна).

Разработанная программа на ассемблере занимает всего-то порядка 0,4 КБайт памяти программ микроконтроллера DD1. Незадействованные аппаратные (линии PD6, PD7) и программные (порядка 7,6 Кбайт) ресурсы микроконтроллера DD1 можно использовать для дополнительных опций.

Например, можно установить пару кнопок и добавить функцию постановки и снятия с охраны устройства через код доступа или управлять какими-то другими исполнительными устройствами. Разобравшись в программе можно заменить установленные программно параметры устройства:

  • период мигания индикатора HL1;
  • длительность звуковой сигнал пьезоэлектрический излучателя ВА1 в режиме контроля состояния дверей;
  • время постановки устройства под охрану, а так же время задержки на включение сигнализации.

В устройстве использованы резисторы С2-ЗЗН-0.125, подойдут любые другие с такой же мощностью рассеивания и погрешностью 5 %. Конденсатор С5 типа К50-35. Конденсатор С1...С4 типа К10-17а. Конденсатор С4 устанавливаются между цепью +5V и общим проводником микроконтроллера DD1. Тумблеры SA1...SA2 типа МТД1.

Реле К1, типа РЭС48Б исполнения РС4.590.202-01. Данные реле, с рабочим напряжением 12 В (или с каким-то другим рабочим напряжением), для каждого конкретного случая, можно подобрать совершенно любые, учитывая при этом коммутируемые ток и напряжение подключаемого исполнительного устройства.

Концевые выключатели можно подобрать совершенно любые под каждый конкретный случай. Это может быть кнопка типа ПКН124, или например, влагозащищенный выключатель путевой типа ВПК2111. Пьезоэлектрический излучатель ВА1- НРМ14АХ.

Транзистор VT1 - КТ829А. Транзисторы VT2, VT3 -КТ3107Е. Индикатор HL1 - АЛ307АМ, красного цвета. Индикатор HL1 можно заменить на любой другой, желательно, с максимальным прямым током до 20 мА.

Рассмотрим работу кодового замка (далее замка) по рисунку 3. Алгоритм его работы достаточно прост: в режиме записи в EEPROM микроконтроллера заносится код, который состоит из 4-х десятичных цифр и набирается на 7- кнопочной клавиатуре. Далее, для проверки записанный код читается в режиме чтения. В рабочем режиме замок ждет ввода кода.

Вводимый код, микроконтроллер записывает в ОЗУ и побайтно сравнивает его с кодом, записанным в EEPROM. Если коды совпали, то микроконтроллер на пять секунд подает сигнал на включение механизма открывания замка.

Кроме того, процедура набора кода может открытой (набранный код индицируется на дисплее, каждой нажатой кнопке ставится в соответствие число на дисплее) и закрытой (при наборе кода на дисплее индицируются одинаковые, заранее определенные символы, каждой нажатой кнопке ставится определенный символ, например).

Для этого в замке есть отдельный переключатель. Для активации, индицируемого на дисплее 4-х разрядного кода в режиме записи и в рабочем режиме, достаточно нажать на клавиатуре любую кнопку.

В интерфейс устройства входят шкальный, знакосинтезирующий индикатор HG1, блок индикации (дисплей) из цифровых семисегментных индикаторах HG2...HG4, переключатель SA1, и клавиатура (кнопки S1...S8).

Кнопки S1...S7 обозначены цифрами от "1" до "7". Данные кнопки задают код ввода Кнопкой S8 (Р) задается, в цикле, один из трех режимов работы: "режим № 1", "режим № 2", "режим № 3". После режима № 3 включается режим №1.

Элемент №1 индикатора HG1 включен при работе в режиме №1", элемент №2 индикатора HG1 включен при работе в режиме № 2, и элемент №3 включен соответственно при работе в режиме №3. На 5-ти разрядном дисплее (сдвоенные цифровые индикаторы индикатор HG2, HG3 отображается вводимый код. Индикатор HG4 индицирует символы "3" (при закрытом замке) и "0" (при открытом замке).

Переключателем SA1 задается режим отображения кода на дисплее устройства. Если данный переключатель находится в положении "1", то код задаваемый с клавиатуры индицируется на дисплее устройства. Если в положении "2" (скрытый режим), то при наборе кода на дисплее устройства в каждом разряде индицируются символы

В режиме №1 (рабочий режим) замок готов к вводу кода для открывания замка (если конечно код был предварительно записан в EEPROM). Перед набором кода на дисплее индицируется код 0000. Элемент №1 индикатора HG1 включен (остальные элементы индикатора HG1 выключены).

Индикатор HG4 индицирует символ "3" (закрыто). Кнопками S1...S7 набирается 4-х разрядный код. Набранный код индицируется на дисплее. Микроконтроллер после нажатия любой из кнопок S1...S7 записывает полученный 4-х разрядный код в ОЗУ и начинает сверку кода записанного в ОЗУ и кода записанного в EEPROM. Коды сравниваются побайтно.

Если сравнение прошло успешно, микроконтроллер подает сигнал на исполнительный механизм открывания замка. На пять секунд включается элемент №4 индикатора HG1, индикатор HG4 индицирует символ "О" (открыто) и устанавливается лог. 0 на выводе 21.

Спустя пять секунд выключается элемент №4 индикатора HG1 на выводе 21 устанавливается лог. 1. На дисплее снова индицируется код 0000. Индикатор HG4 снова индицирует символ "3" (закрыто).

В режиме №2 (режим записи) осуществляется запись секретного кода в EEPROM. На дисплее индицируется код 0000. Элемент №2 индикатора HG1 включен. Индикатор HG4 индицирует символ "3" (закрыто). Кнопками SI...S7 набирается код. Набранный код индицируется на дисплее.

Микроконтроллер записывает в EEPROM индицируемый на дисплее 4-х разрядный код после нажатия любой из кнопок 51...57. После записи кода на дисплее снова индицируется код 0000.

В режиме №3 (режим проверки записанного кода) осуществляется проверка записанного секретного кода в EEPROM. Элемент №3 индикатора HG1 включен. Индикатор HG4 индицирует символ "3" (закрыто). Записанный код в EEPROM, индицируется на дисплее.

Понятно, что доступ к кнопке S8 и переключателю SA1 должен быть ограничен. Конструктивно это сделать не так уж и сложно.

Рассмотрим основные, функциональные узлы устройства (рис. 3). Основой устройства служит микроконтроллер DD1, рабочая частота которого задается генератором с внешним резонатором ZQ1 на 11.0592 МГц. Порт PD микроконтроллера DD1 управляет динамической индикацией.

Динамическая индикация собрана на транзисторах VT1...VT5, сдвоенных, цифровых, семисегментных индикаторах HG2, HG3 и одинарном цифровом индикаторе HG4. Резисторы R7...R14 - токоограничительные для сегментов индикаторов HG2...HG4. Коды для включения вышеуказанных индикаторов при функционировании динамической индикации поступают в порт PC микроконтроллера DD1.

Для функционирования клавиатуры задействован вывод 19 (PD5) микроконтроллера DD1. Элементы шкального индикатора HG1 подключены к выводам порта РВ микроконтроллера DD1. Резисторы R2...R5 - токоограничительные для элементов индикатора HG1.

Сразу после подачи питания на выводе 9 микроконтроллера DD1 через RC-цепь (резистор R1, конденсатор С3) формируется сигнал системного аппаратного сброса для микроконтроллера DD1. На дисплее индицируется код 0000. Элемент №1 индикатора HG1 -включен. Индикатор HG4 индицирует символ "3" (закрыто).

Питающее напряжение +5V поступает на устройство с соединителя XI. Конденсатор С5 фильтрует пульсации в цепи питания +5 В. Блокировочный конденсатор С4, стоит по цепи питания DD1.

Совсем коротко о программе. В программе используются два прерывания: Reset и прерывание таймера ТО, обработчик которого начинается с метки ТІМ0. При переходе на метку Reset инициализируются стек, таймер, порты, а так же флаги и переменные используемые в программе.

Таймер ТО генерирует прерывания по переполнению (в регистре TIMSK установлен бит TOIE0). Коэффициент предварительного деления тактовой частоты таймера установлен равным 64 (в регистре TCCR0 записано число 3).

В основной программе осуществляется включение элементов индикатора HG1. Включенные элементы данного индикатора, как уже упоминалось выше определяют текущий режим работы замка. В обработчике прерывания таймера ТО осуществляется: процедура опроса кнопок S1...S8, функционирование динамической индикации, запись секретного кода в EEPROM, чтение секретного кода из EEPROM, перекодировка двоичного числа в код для отображения информации на семисегментнных индикаторах устройства, а так же временной интервал длительностью пять секунд, необходимый для включения исполнительного устройства соленоида.

В ОЗУ микроконтроллера с адреса $61 по адрес $70 организован буфер отображения для динамической индикации. Ниже приведено подробное распределение адресного пространства в ОЗУ микроконтроллера.

  • $60 - адрес начала ОЗУ микроконтроллера.
  • $61...$64 - адреса, где хранится задаваемый код для открывания замка и символ "3". Эти адреса выводятся на индикацию в режиме №1 (буфер №1).
  • $66...$69 - адреса, где хранится код читаемый из EEPROM и символ "3". Эти адреса выводятся на индикацию в режиме № 3 (буфер №2).
  • $6С...$70 - адреса, где хранятся символы при скрытом наборе кода, и символ " 3". Эти адреса выводятся на индикацию в режиме № 1(буфер №3).

Флаги, задействованные в программе, находятся в регистрах R19 (flo) и R25 (flo1).

Разработанная программа на ассемблере занимает порядка 1,2 Кб памяти программ. Разобравшись в программе, при незначительных доработках принципиальной схемы, задействовав свободные аппаратные и программные ресурсы микроконтроллера DD1, можно например, увеличить число разрядов в дисплее и количество кнопок или добавить звуковую сигнализацию.

Применены резисторы типа С2-ЗЗН подойдут любые другие с такой же мощностью рассеивания и погрешностью 5 %. Конденсаторы С1...С4, типа - К10-17а, С5 - К50-35а. соединитель XI типа WF-4. Конденсатор С4 устанавливается между цепью +5V и общим проводником микроконтроллера DD2. Для отработки макета применялся выключатель SA1 типа ВДМЗ-8.

Для установки в блочный корпус, можно применить, например, переключатель типа МТДЗ. В дисплее выделен разряд, индицирующий символы "3", "О" (индикатор HG4) на фоне остальных разрядов интерфейса. Поэтому для данного разряда выбран семисегментный индикатор зеленого цвета HDSP-F501, индикаторы HG2, HG3 зеленого цвета DA56-11GWA.

Замок и устройство охраны не требуют никакой настройки и наладки. При правильном монтаже начинают работать сразу.

Исходный код и прошивки программ - Скачать (8 КБ).

Шишкин С. В. РК-07-16.

Литература:

  1. А. В. Белов Создаем устройства на микро-контроллерах.
  2. С. В. Шишкин. Кодовый замок на базе микроконтроллера. Р-10-2011.

Предлагаем схему универсальной охранной сигнализации на небольшом 8-ми выводном микроконтроллере ATTINY-13, при всей своей простоте реализующей множество удобных режимов работы.

Принципиальная схема охранного устройства

Алгоритм работа схемы

1. При включении питания, через 10 сек схема переходит в режим охраны, сигнализируя об этом подачей импульса длительностью 0,5 сек на сирену (при условии, что шлейфы замкнуты на корпус) и подается питание на светодиод который отображает «статус» системы.

1.1. Если на момент перехода в режим охраны один из шлейфов разорван то на сирену подается три импульса продолжительностью 0,5 сек и интервалом 0,5 сек, а светодиод «статус» начинает мигать 1 раз (если разорван шлейф №1), 2 раза (если разорван шлейф №2) и 3 раза (если разорваны шлейф №1 и №2) продолжительностью 1 сек и интервалом 0,5 сек с перерывом 4 сек, режим охраны не включается.

2. Если в режиме охраны шлейф №1 разрывается, то с задержкой 3 сек (для ручного снятия с охраны) начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары).
Светодиод «статус» начинает мигать, как указано в п.1.1.

2.1. Если, с момента первого разрыва шлейфа №1, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

2.2. Если, с момента первого разрыва шлейфа №1, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

2.3 Если, с момента первого разрыва шлейфа №1, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №1 охрана ведется по шлейфу №2.

2.4 Если во время процессов оповещения по шлейфу №1 происходит разрыв шлейфа №2, то оповещение по шлейфу №2 происходит с задержкой 60 сек.

2.5 Если по истечению 60 сек. после первого разрыва шлейф №1 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.2, за исключением светодиода «статус» который запоминает что шлейф №1 был разорван (повторение п.2.5 возможно не более 10 раз).

3. Если в режиме охраны шлейф №2 разрывается начинается оповещение (импульс на сирену продолжительностью 60 сек и импульс продолжительностью 3 сек на светодиод оптопары). Светодиод «статус» начинает мигать, как указано в п.1.1.

3.1. Если, с момента первого разрыва шлейфа №2, в течении 3-х минут шлейф не восстановлен то выдается повтор оповещения.

3.2. Если, с момента первого разрыва шлейфа №2, в течении 6-ти минут шлейф не восстановлен то выдается повтор оповещения.

3.3 Если, с момента первого разрыва шлейфа №2, шлейф не восстановлен в течении 7-ми минут то на светодиод оптопары подается 6 импульсов продолжительностью 3 сек с периодичностью 60 минут. На период разрыва шлейфа №2 охрана ведется по шлейфу №1.

3.4 Если во время процессов оповещения по шлейфу №2 происходит разрыв шлейфа №1, то оповещение по шлейфу №1 происходит с задержкой 60 сек.

3.5 Если по истечении 60 сек. после первого разрыва шлейф №2 восстановлен на период 10 сек., на любом этапе, то через 10 сек. схема продолжает работу с п.3 за исключением светодиода «статус» который запоминает что шлейф №2 был разорван (повторение п.3.5 возможно не более 10 раз).

История развития охранной сигнализации насчитывает намного больше лет, чем принято полагать. Примером могут служить древние схемы оригинальных изобретений, таких как японские «поющие полы», «дионисиево ухо» из античной Греции или египетские потайные ловушки, предназначенные для обеспечения сохранности сокровищ фараонов. Первые прототипы современных охранных сигнализаций начали разрабатываться вместе с появлением фотоэлементов и электрического звонка.

Современные технологии предоставляют возможность выбрать охранную сигнализацию среди множества различных вариантов. В таких системах используются самые разные виды и комбинации оборудования. Однако в этом разнообразии наблюдается общая логика, в связи с чем можно описать общую простой охранной сигнализации, позволяющую составить определенное представление о ее конструкции и принципах работы.

Схема оборудования любой системы охранной сигнализации включает следующие компоненты.

Извещатели охранной сигнализации . В зависимости от проекта могут применяться различные типы детекторов. Наиболее распространенными вариантами являются инфракрасные (пассивные или активные), фотоэлектрические, магнитоконтактные, а также извещатели, реагирующие на звук, разбитие стекла или изменение температуры.

Контроллер. Это ключевой компонент охранной сигнализации, собирающий и анализирующий сигналы со всех извещателей системы, а также инициирующий ее срабатывание при проникновении посторонних на охраняемую территорию. Одновременно контроллер выводит информацию об инциденте на дисплей или другое устройство отображение данных.

Исполнительное устройство. С помощью данного элемента система реагирует на нарушение охранного контура. Современные сигнализации оснащаются самыми различными исполнительными устройствами, в том числе звуковыми (сиренами, звонками, громкоговорителями), коммуникационными (оповещающими о тревоге по радиоканалу или сотовой связи), визуальными (световыми панелями, проблесковыми маячками) или активными, например, блокирующими выходы и лифты.

Источники питания и коммуникационные линии. Данные элементы служат для энергообеспечения (в том числе автономного) и связи между элементами охранной системы.

Типичная схема охранной сигнализации выглядит следующим образом.

В качестве извещателей используются активные инфракрасные детекторы движения и пассивные магнитные герконы, вызывающие срабатывание системы при открытии дверей. Исполнительными устройствами служат звуковые и визуальные (световые) индикаторы (проблесковый фонарь, сирена). Контрольная панель содержит компоненты управления охранной сигнализацией, светодиодные индикаторы, сигнализирующие в фоновом режиме о целостности контура, а также специальное реле, запускающее при замыкании контактов на нем механизмы исполнительных устройств. Обеспечение системы электроэнергией осуществляется с помощью 12-вольтового источника бесперебойного питания. Как правило, охранные сигнализации имеют автономное электроснабжение, так как зависимость от центральной сети повышает их уязвимость для нарушителей.

Имея общее представление о принципе построения и работы системы охранной сигнализации, эту схему можно модифицировать и дорабатывать с помощью различных методов, например:

  • увеличивая число независимых по отношению друг к другу контуров охранных систем;
  • комбинируя детекторы различного типа и оптимизируя их локализацию. При этом основная задача заключается в устранении «слепых зон» и обеспечении запасных сценариев срабатывания охранного контура;
  • предусматривая дополнительные степени безопасности, такие как запасные источники питания сигнализации, или способы оперативного восстановления функциональности охранной системы при нарушении коммуникационных каналов;
  • интегрируя охранную сигнализацию с другими системами безопасности, такими как видеонаблюдение, патрульные службы, противопожарные средства и т. д.
  • дополняя функции активными охранными средствами, воздействующими на нарушителей. Парализующий газ, выпускаемый в помещение через вентиляционные ходы, люки в полу, ведущие непосредственно в бассейн с пираньями и другие приемы из приключенческих фильмов - экстремальные примеры таких механизмов. Однако не столь экзотические и опасные, но схожие по принципу действия охранные средства достаточно часто применяются и в действительности.

В абсолютном большинстве случаев меры, усложняющие систему безопасности, имеют своей целью повышение ее надежности и способности к противостоянию любым известным методам незаметного проникновения или прямого вторжения на охраняемую территорию. Нарушители, в свою очередь, стараются разработать эффективные, быстрые и незаметные способы обхода всех степеней защиты.

В любом случае, это очередной вариант противостояния средств нападения и защиты, в котором каждая из сторон должна безостановочно развиваться, чтобы не отдать преимущество в руки противнику. По этой причине в сфере создания охранных сигнализаций в будущем постоянно будут разрабатываться новые технологии и инновационное оборудование. Вместе с тем принципиальная схема систем безопасности будет оставаться неизменной.

Компания «ЮНИТЕСТ» специализируется на изготовлении охранного и противопожарного оборудования, а также проектировании систем безопасности.

Схема пожарной сигнализации, разработанная с учетом архитектурных особенностей здания, позволит максимально рационально и эффективно расположить оборудование для своевременного определения и локализации очага возгорания. Схемой пожарной сигнализации должны быть предусмотрены система пожаротушения, управление вентиляцией здания, а также, возможно, речевое оповещение и управление работой лифтов.

Схема охранной сигнализации служит для разработки системы по предупреждению незаконного проникновения в здание посторонних лиц. В схеме сигнализации учитываются пути прокладки кабеля, установка датчиков, централи и размещение системы управления. Важно, чтобы размещение системы минимизировало ущерб, наносимый внутренней отделке здания. Этот фактор также должен быть учтен на схеме.

Схема охранно-пожарной сигнализации призвана учитывать расположение интегрированной системы безопасности. На ней отражаются сигнальные устройства, приборы для пожаротушения, блоки управления, а также размещение пропускного бюро и системы видеонаблюдения. Схема разрабатывается с учетом индивидуальных особенностей охраняемого объекта - рассчитывается необходимое количество датчиков и приспособлений для порошкового, газового или водяного пожаротушения.

Компания «ЮНИТЕСТ» - незаменимый помощник при разработке систем охранной и пожарной сигнализации. Вся продукция сертифицирована и призвана служить вашей безопасности.